Extracting Information from Complex Networks

1

Complex Networks • Networks that arise from modeling complex systems: relationships – Social networks – Biological networks • Distinguish from – random networks – uniform networks • grid

ring

Information from network structure

2

- Explore properties of graph
 - nodes
 - edges
- Interpret in context of subject of network

Graph properties of interest for network

· density

(number of edge)/(number of possible edges) directed vs undirected? self-edges?

- diameter
 largest shortest path
- distribution of shortest paths "6 degrees of separation"
- · average cluster coefficient
- distribution of degrees

for social network with n nodes

- average density low
- average shortest path log(n) or less
 small world network
- form communities
- distribution of degrees follows power law

9

- power law: log(y) = a*log(x) + b

eg Zipf's law

- call "scale-free"

Characterizing relationships

10

12

- Relationship: edge between two nodes
 - Consider now just undirected

- 90% effective diameter 7.8

- Refer to as "neighbors"
- Would like to extract properties of the relationship from network structure.
- Measures here are two
 - Embeddedness: number of mutual neighbors
 - Dispersion: measure of connectedness among mutual neighbors
 - Backstrom & Kleinberg, 2014

A network Analysis of Relationship Status on Facebook Backstrom & Kleinberg 2014

- Observe: person's network of friends represents diverse set of relationships
- Question: Can one recognize romantic partners on Facebook from structure of friends network?
- Contributions (some)
 - Define new measure dispersion
 - Show dispersion works better that embeddedness
 - Show dispersion works pretty well
 - Show combining dispersion with many other signals via machine learning does even better

Dispersion Definition

- · Actually define several versions
- Basic: absolute dispersion disp(u,v) for link (u,v)
 - u distinguished: want to predict his/her partner
 - Define $\boldsymbol{G}_{\boldsymbol{u}}$ as the subgraph on neighbors of \boldsymbol{u}
 - Define $C_{\boldsymbol{u},\boldsymbol{v}}$ as the set of common neighbors of \boldsymbol{u} and \boldsymbol{v}
 - For s,t nodes in $C_{u,v}$, define $f_{u,v}(s,t)$ with value

1 if s, t not neighbors and have no common neighbors in $G_{\rm u}$ other than u and v

14

16

0 otherwise

 $-\operatorname{disp}(u,v) = \sum_{s,t \text{ in } C_{u,v}} f_{u,v}(s,t)$

Experiments: Data

- · Facebook users
 - At least 20 years old
 - Between 50 and 2000 friends
 - Listed spouse or relationship partner on profile
- Sample ~1.3 million of these users selected uniformly at random and their network neighborhoods (extended dataset)
 - Neighborhoods avg 291 nodes, 6652 links
 - 379 million nodes , 8.8billion links overall
- Subsample 73,000 neighborhoods (primary dataset)
 - Only neighborhoods with at most 25,000 links
 - Uniformly at random

15

Experiments: Modify definition of dispersion

- · For improved results
- Normalized dispersion: disp(u,v)/emb(u,v)
 emb(u,v) is embeddedness
- Recursive dispersion: look at neighbors of neighbors of neighbors ...
 - Find best performance using 3 levels

View Zoom Share	Markup Rotate Edit S			Search
type	embed	rec.disp.	photo	prof.view.
all	0.247	0.506	0.415	0.301
married	0.321	0.607	0.449	0.210
married (fem)	0.296	0.551	0.391	0.202
married (male)	0.347	0.667	0.511	0.220
engaged	0.179	0.446	0.442	0.391
engaged (fem)	0.171	0.399	0.386	0.401
engaged (male)	0.185	0.490	0.495	0.381
relationship	0.132	0.344	0.347	0.441
relationship (fem)	0.139	0.316	0.290	0.467
relationship (male)	0.125	0.369	0.399	0.418
Figure 4. The performan and romantic partners: the	ce of different	ent measures in the table g	for identif give the <i>pro</i>	ying spouses ecision at the
first position — the fractio	n of instan	ces in which t	he user ra	nked first by

17

profile viewing and presence in the same photo.

Additional questions in paper

- · How much better can lots of features do?
 - Combined 120 features for nodes in primary dataset
 - · Combined variations of dispersion def
 - Included many other properties from user pages and behavior
 - Used machine learning classifier
 - Trained on 50% users
 - Overall precision at 1st position 0.705 (vs 0.506)

18

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Betweenness definition

• Gave you: Edge Betweeenness = # shortest paths using edge

Betweenness definition

• Gave you:

Edge Betweeenness = # shortest paths using edge Real definition:

- For an edge e:
 - for each pair of nodes x and y in the graph, e is credited with the fraction of shortest paths between x and y that contain e
 - Sum credits over all n(n-2)/2 pairs x,y

23

Using Betweenness in Community Finding

22

- Repeat until graph disconnected:
 - Remove edge with largest betweenness
 - Recalculate betweenness
- · Graph can fall into one or more pieces
- Can repeat on pieces until find desired number or size of communities => Hierarchical divisive

How calculate betweenness Girvan-Newman Algoritm

- Repeat for each node x in graph the following 2 steps:
 - 1. Do breadth first search from node x
 - · Induces parent/child relationship
 - As search, label each node with number of shortest paths from x to it:
 - Level by level: sum of labels of parents
 - Include x to itself (1)

25

- 2. Working bottom up, level by level, calculate credits for each node and then credits for edges from level above:
 - Each leaf gets 1 credit
 - Calculate edge credits for edges to level above
 - Calculate node credits for next level up
 - Each non-leaf gets 1 credit plus sum of credits on edges from it to next level below.
 - · Edge credits already calculated.

26

28

Final calculation

- Now have n edge credits per edge one for breadth first search starting at each node as root.
- Sum the n credits for an edge.
- Divide by two for final edge betweenness
 Double-counted paths

- Goal: bi-partition undirected graph

 want each partition of close to equal size
- Define diagonal matrix D:
 - -D(i,i) = degree of node i
- Define Laplacian matrix L = D-E – for adjacency matrix E
- Look at 2nd smallest eigenvalue of L

29

Specifics • smallest eigenvalue of L = 0 – eigenvector all 1's (denote as 1) • second smallest eigenvalue: minimize x^TLx such that X orthogonal to 1 (i.e. Σ_i x_i = 0) X unit vector (i.e. Σ_i x_i² = 1) • show equivalent to minimize Σ_{edges (i,j)} (x_i - x_j)² under same constraints

Partitoning *, 's must be positive and negative - Σ_i x_i = 0 and Σ_i x_i² = 1 * Nodes with positive x_i s in one partition * Nodes with negative x_i s in other * Properties * minimization tends to give x_i, x_j same sign when is edge (i,j) => minimizing cut * minimizing Σ_{edges (i,j} (x_i - x_j)² * minimization tends to balance sizes

HITS and clustering

Recall HITS matrix formulation: $a = E^{T}h$ $a = E^{T}Ea$

h = Ea $h = EE^{T}h$ for adjacency matrix E, authority vector **a**, hub vector **h**

- *a* is the eigenvector corresponding to the eigenvalue 1 for E^TE
- *h* is the eigenvector corresponding to the eigenvalue 1 for EE^T

HITS and clustering

- Non-principal eigenvectors of EE^T and E^TE have positive and negative component values
 - $\begin{array}{ll} \text{ Denote } & a_{e2}, a_{e3}, \dots \\ & \text{matching } & h_{e2}, h_{e3}, \dots \end{array}$
- For a matched pair of eigenvectors \boldsymbol{a}_{ei} and \boldsymbol{h}_{ei}
 - Denote k^{th} component of j^{th} pair: $\boldsymbol{a}_{ej}(k)$ and $\boldsymbol{h}_{ej}(k)$
 - Make a "community" of size c (chosen constant):
 - Choose c pages with most positive $h_{ej}(k)$ hubs
 - Choose c pages with most positive $\mathbf{a}_{ej}(\mathbf{k})$ authorities
 - Make another "community" of size c:
 - + Choose c pages with most negative $\pmb{h}_{ej}(k)$ hubs
 - Choose c pages with most negative $\mathbf{a}_{ej}(\mathbf{k})$ authorities

Do all social networks, as networks, have same properties?

 Kwak, Lee, Park, Moon study Twitter (pub 2010):

NO

34

36

Kwak, Lee, Park, Moon experimental set-up

- July 6-31, 2009 crawl of Twitter
 - 41.7 million user profiles collected
 - 1.47 billion social relations
- started with "Paris Hilton" and crawled followers and "followings"
- · Added users tweeting about trending topics
 - 4,262 trending topics
 - collected top ten every 5 minutes
 - 106 million tweets mentioning trending topics

35

Kwak, Lee, Park, Moon Findings

- # followers fits power law but
- users with > 100,000 followers have many more followers than expect
- 77.9% links one way
- shortest path between users shorter than other social networks
 - average 4.12
 - for 97.6 % pairs, path length \leq 6

Summary: Complex Networks and Obtaining Information

- Complex networks provide many ways of improving our acquisition of information
- Uses still in active development