Collaborative Filtering

- Recommend new items liked by other users similar to this user
- need items already rated by user and other users
- don't need characteristics of items
 - each rating by individual user becomes characteristic
- Can combine with item characteristics
 hybrid content/collaborative

1

3

Major method types

- Nearest neighbor
 - Use similarity function
 - Prediction based on previously rated items

2

4

- Matrix Factorization
 - "Latent factors"
 - Matrix decomposition
- Both use (user × item) matrix
 vector similarity

Example of nearest neighbor: Preliminaries

- Notation
 - $r(u,i) = rating of i^{th} item by user u$
 - $-I_{u}$ = set of items rated by user u
 - $-I_{u,v}$ = set of items rated by both users u and v
- $U_{i,j}$ = set of users that rated items i and j
- Adjust scales for user differences

$$r_u^{avg} = (1/|I_u|) * \sum_{u} r(u,i)$$

- Adjusted ratings: $r_{adi}(u,i) = r(u,i) - r_u^{avg}$

One choice of similarity function: User Similarities

similarity between users u and v
 Pearson correlation coefficient

$$sim(u,v) = \frac{\sum_{i \text{ in } I_{u,v}} (r_{adj}(u,i) * r_{adj}(v, i))}{(\sum_{i \text{ in } I_{u,v}} (r_{adj}(u,i))^2 * \sum_{i \text{ in } I_{u,v}} (r_{adj}(v, i))^2)^{\frac{1}{2}}}$$

Collaborative filtering example					
user		book 1	book 2	book 3	book 4
ratings	user 1	5	1	2	0
	user 2	x	5	2	5
	user 3	3	1	x	2
	user 4	4	0	2	?
adj. user ratings		book 1	book 2	book 3	book 4
	user 1	3	-1	0	-2
	user 2	x	1	-2	1
	user 3	1	-1	x	0
	user 4	2	-2	0	?

Limitations

- May not have enough ratings for new users
- New items may not be rated by enough users
- Need "critical mass" of users
 All similarities based on user ratings

But can take user "out of comfort zone"

Applying nearest-neighbor collab. filtering concepts to search

- · Collaborative histories
 - How determine user similarity?
 - Clicking URL = buying product?
 - Behavior on only identical searches?
 - Exact URLs or general topic interests?
 - Hybrid content-based and behavior-based
 - Computational expense?
 - Argues for general topic-interest characterizations

11

- How apply similarity?
 - Same search? or Same topic of search?
 - Bias ranking? or Bias topics of results?

Where are we?

- Refinement/Personalization of results
- Study techniques of
 - Recommender systems
 - Content filtering
 - Collaborative filtering
 - Nearest neighbor methods
 - Matrix factorization methods

Matrix factorization for
Collaborative Filtering• Give ratings matrix R: M users X N items
• R has holes- R_{ij} with no value• Want to fill in holes => predict ratings• Idea: decompose R:
 $R=PQ^T$ • P is M X f; Q is N X f
• no interpretation but can add one
• must choose f

Optimization

• Minimize least squares error:

err(P,Q) is defined as

 $\sum_{(u,i) \text{ in } F} (R_{(u,i)} - (PQ^T)_{(u,i)})^2$

for F the set of (u,i) for which $R_{(u,i)}$ has a value

16

- Minimize for one element change:
 - choose one element of P or one element of Q to vary, say $\mathsf{P}_{(r,s)}$

$$(PQ^{T})_{(r,j)} = (\sum_{k, k \neq s} P_{(r, k)} * Q_{(j, k)}) + x * Q_{(j, s)}$$

- err(P,Q) becomes equation with one unknown
 - look at only terms involving x
 - get sum over j for which $R_{(r,j)}$ has a value of:

$$(R_{(r,j)} - (PQ^{T})_{(r,j)})^{2} = (R_{(r,j)} - (\sum_{k, k \neq s}) P_{(r, k)} * Q_{(j, k)}) - x * Q_{(j, s)})^{2}$$

17

- take derivative wrt x, set to 0, solve

High-level issues for Collaborative Filtering: Global effects

Effects over many or all of ratings

- ✓ different users have different rating scales
- metadata (attributes) for items and/or users
 hybrid content/collaborative
- · date of rating
- · trend of user's ratings over time
- · trend of item's ratings over time

Reference: Scalable Collaborative Filtering w/ Jointly Derived Neighborhood Interpolation Weights, Bell and Koren, *IEEE Intern. Conf. Data Mining* (part of winning Netflix contest team³¹

Final thought

All techniques we've seen behavior or topic oriented

What about links? What about PageRank?

22

"Topic Sensitive" PageRank

- Use pre-defined topics
 - Open Directory Project (DMOZ)
 - "the largest, most comprehensive human-edited directory of the Web."
 - 16 top-level topics
- Each page has PageRank for each topic
 - Degree to which page is part of topic
- · Calculate similarity of query to each topic
 - Use linear combination of topic PageRanks based on similarity values query to topic

Personalized PageRank

Kamvar et. al.

- Random leaps are biased by personal interests change v
- Combined with use of block structure to make more efficient:
 - Divide Web graph into blocks (clusters)
 - Use high-level domains (e.g. princeton.edu)
 - Calc. local PageRank within each block
 - Collapse each block into 1 node new graph
 Weighted edges between nodes
 - Calc. PageRank with biased leaps for block structure
 - Weight local PageRanks with block PageRank
 - Use to initialize power calculation

26

Refinement & Personalization Summary

- · Looked at several techniques to modify search
- explicit user feedback
- user behavior: history
 - user history
 - crowd history
 - collaborative history: "people like you"
- · role of social networks
 - general analysis
 - relationships
- models of recommender systems

27