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Refining and 
Personalizing 

Searches 

Themes 

•  Explicit feedback versus search history 

•  Personalized history versus crowd 
history 
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Refining and Personalizing: 
Targets 

•  collection 
•  focused crawling 

•  query  ç 

•  satisfying documents 
–  increase set? 

•  ranking  ç 
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Refine initially: query 

•  Help user get better query 

•  Commonly, query expansion 
–   add synonyms 

•  Improve recall 
•  Hurt precision? 
•  Sometimes done automatically − with care 

– Modify based on prior searches same query 
•  Not automatic 
•  All prior searches  - eg. suggested search terms 
    vs  
•  your prior searches 
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Refining after search 

•  Use user feedback 
or pseudo-feedback 

•  Approximate feedback with first results 

or implicit feedback 
•  e.g. clicks 

•  change ranking of current results  
•  search again with modified query 
•  change ranking for future searches 
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Explicit user feedback 

•  User must participate 

•  User marks (some) relevant results 
    or 
•  User changes order of results 

– Can be more nuanced than relevant or not 
– Can be less accurate than relevant or not 

•  Example: User moves 10th item to first 
– says 10th better than first 9 
– Does not say which, if any, of first 9 relevant 
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Implicit user feedback 

•  Click-throughs 
– Use as relevance judgment 
– Use as reranking: 

When click result, moves it ahead of all results 
didn’t click that come before it 

– Problems? 

•  Better implicit feedback signals? 
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User feedback in  
classic vector model 

•  Run query 
– Query represented as vector of term weights 

•  User marks top p documents for relevance 
p = 10 to 20 “typical” 

•  Construct new weights for terms in query 
vector 
– Modifies query 

•  Rerun query 
– Could use just on initial results to re-rank 
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Deriving new query  
for vector model 

For collection C of n doc.s 
•  Let Cr denote set all relevant docs in collection,  

 

Perfect knowledge Goal:  
Vector qopt =  
1/|Cr| * (sum of all vectors dj in Cr) - 
1/(n- |Cr|) * (sum of all vectors dk not in Cr) 
           centroids 
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Deriving new query for vector model: 
Rocchio algorithm 

Give query q and relevance judgments for a 
subset of retrieved docs 

•  Let Dr denote set of docs judged relevant  
•  Let Dnr denote set of docs judged not relevant 

 

Modified query:  
Vector qnew =  αq + 
β/|Dr| * (sum of all vectors dj in Dr) - 
γ/(|Dnr|) * (sum of all vectors dk in Dnr) 
 
For tunable weights α, β, γ 
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Remarks on new query 
•  α: importance original query 
•  β: importance effect of terms in relevant docs 
•  γ: importance effect of terms in docs not relevant 

•  Usually terms of docs not relevant are least 
important 
–  Reasonable values α=1, β=.75, γ=.15 

•  Reweighting terms leads to long queries 
– Many more non-zero elements in query vector qnew 
–  Can reweight only most important (frequent?) terms  

•  Most useful to improve recall 
•  Users don’t like: work + wait for new results 12 

Simple example  
user feedback in vector model 

•  q = (1,1,0,0) 
•  Relevant:   d1 = (1,0,1,1) 
                      d2 = (1,1,1,1) 
•  Not relevant:  d3=(0,1,1,0) 
•  α, β, γ = 1 
•  qnew = (1,1,0,0) + (1, 1/2, 1, 1) - (0,1,1,0) 
          = (2, 1/2, 0, 1) 
Term weights change            New term 
Observe: Can get negative weights 
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Explicit feedback: Re-ranking  

•  Can disambiguate within given results 
–  jaguar car versus jaguar animal 

•  Can modify rankings for future searches 

•  Algorithms usually based on machine learning 
–  Learn ranking function that best matches partial 

ranking(s) given 

•  Simpler strategies: 
– use for repeat of same search 

•  user reorder or select best  
•  Google experiment circa 2007 

 
 

Behavior History 
•  Going beyond behavior on same query. 

•  Personal history versus Crowd history 
– Crowd history 

•  Primarily search history 
– Google’s claim Bing copies 

– Personal history 
•  characterize behavior 
•  characterize interests:  topics 
•  what  use? 
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Personal History: sources 

•  Your searches 
•  Your social networks  

– Your content 
•  Other behavior – browsing, mail?, … 
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Collaborative history 

•  History of people “like” you 
•  How get? 

– For “free”: social networks 
•  friends, lists, … 

– Deduce: Crowd history + personal history 
•  recommendations 

•  How characterize? 
•  Shared behaviors 
•  Shared topics  
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Crowd versus friends 

•  Content and properties can be  
1.  Yours   
2.  Your friends 
3.  The crowd’s 
 

•  1 and 2 provide personalization 
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Social Network Sites 
and  

Obtaining Information 

Social network sites 
•  Catch-all term for 

– social networking sites 
•  Facebook 

– microblogging sites 
•  Twitter 

– blog sites (for some purposes) 

•  Now interested in social networking information  
–  friending/following concept 
–  not totality of Web 
–  not Wikipedia encyclopedia pages  
–  yes Wikipedia talk pages?  19 

Ways we can use social 
networks to find information 

•  Search site 
•  Aggregate site information to get trends 
Ø Use site content as meta-information for 

search 
Ø Use site properties as meta-information 

for search 

20 
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Use site content as meta-
information for search 

•  disambiguate queries (Teeven et al 2011 suggested) 
–  search Twitter with query 
–  analyze content of matching tweets to identify most 

current, most popular meaning 
•  factor in ranking URLs (Dong et. al. 2010 studied) 

–  harvest URLs mentioned in tweets 
–  associate a URL with tweeted text surrounding it 

•  other uses for tweet text? 
•  similar analyses of social networking sites such 

as Facebook? 21 

Use site properties as meta-
information for search 

•  interactions: friends, followers, likes, retweets,  
more? 

•  Uses 
–  ranking by popularity of content 
–  ranking by influence of author 

•  temporal relevance 
–  ranking  
–  discover URLs faster (Dong et. al. 2010) 
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Recommender Systems 
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Relationship to information 
retrieval? 

•  Ranked results of query can be 
considered recommendations based on 
constraints (query) placed by user 

 

24 
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Recommender Systems 
•  Look at classic model and techniques 

–  Items 
–  Users 
–  Recommend Items to Users 

•  Recommend new items based on: 
–  similarity to items user liked in past:  individual history 
“Content Filtering”   

–  Liked by other users similar to this user: collaborative 
history 
“Collaborative Filtering” 

–  Liked by other users: crowd history 
•  easier case 
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Recommender System attributes 

•  Need explicit or implicit ratings by user 
–  Purchase is 0/1 rating 

•  Movie tickets 
•  Books  

•  Have focused category 
–  examples: music, courses, restaurants 
–  hard to cross categories with content-based 
–  easier to cross categories with collaborative-based 

•  users share tastes across categories? 
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Content Filtering 
•  Items must have characteristics 
•  user values item  

⇒  values characteristics of item 
•  model each item as vector of weights of 

characteristics 
– much like vector-based IR 

•  user can give explicit preferences for 
certain characteristics 

Buy/no buy prediction method:  
similarity with centroid 

•  Average vectors of items user bought 
– user’s centroid 

•  Find similarity of new items to user’s centroid  

•  Decide threshold for “buy” recommendation 

28 
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Example 
•  user bought book 1 and book 2 
•  Average books bought = (0, 1, 0.5, 0) 
•  Score new books 

–  dot product gives:  score(A) = 0.5; score (B)= 1 
•  decide threshold for recommendation 

1st person romance mystery sci-fi 

book 1 0 1 1 0 

book 2 0 1 0 0 

new book A 1 .5 0 0 

new book B 0 1 0 .2 30 

Method issues  

•  Centroid best way to build a preference vector? 

•  What metric use for similarity between new 
items and preference vector? 
-  Normalization? 

•  What if users give ratings? 
-  Centroid per rating value? 

•  how include explicit user preferences 

•  How determine threshold? 
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Example with explicit user preferences 
How use scores of books bought?  

Try: preference vector p where component k = 
user pref for characteristic k if ≠ 0 
avg. comp. k of books bought when user pref =0 

 0 pref for user = “don’t care” 
 

p=(0, 1, 0.5, -5)  
New scores? 

p•A = 0.5 
p•B = 0 

1st per rom mys sci-fi 

user pref 0 1 0 -5 

book 1 0 1 1 0 

book 2 0 1 0 0 

new A 1 .5 0 0 

new B 0 1 0 .2 

Other methods: machine learning 

•  Major alternatives based on classifiers 
– Training set: items bought and not bought 
– Train classifier – many algorithms 
– Classify new item as buy/no buy 

•  Observations 
– Uses books not bought. Problems? 
– Multiple rating values 

Can use multiple classes 
32 
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Limitations of Content Filtering 

•  Can only recommend items similar to 
those user rated highly 

•  New users 
–  Insufficient number of rated items 

•  Only consider features explicitly 
associated with items 
– Do not include attributes of user 

Applying content filtering 
methods to search 

•  Characterize documents (info. objects) 
–  topic analysis? 
– other properties, e.g.: 

•  Domain of source 
•  Date of publication/update 

•  Characterize individuals 
–  deduce from properties of objects interact with 
–  user provided preferences 
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Applying content filtering 
methods to search, cont. 

•  Query filters documents to consider 
– Convert query to topic-based? 

•  Too error prone? 

– Modify query to bias towards user’s 
preferred topics? 

•  Ranking is recommendation 
– Use similarity to user’s characterization 
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Example study: 
Personalizing Web Search Using Long-term 

Browsing History (in WSDM11) 

•  Goal: rerank  
–  top 50 results from Google query 

•  Query is initial filter to get results from Google 

•  Strategy:  
–  score snippets from search result against user profile  
–  rerank based on snippet score 
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Personalizing Web Search Using Long-term Browsing History, cont 

User Characterization 
•  Selection of info 

–  list of visited URLs w/ number visits 
–  list of past search queries and pages clicked 
–  list of terms with weights for content of pages visited 

•  Studies selection of methods  
–  what sources of terms use 

•  body, title tags, metainfo like keywords 
–  weights for terms 

•  tf-idf 
– where get idf? 

•  “modified BM25”- a “log odds measure” 37 best 

WmodBM25  weighting 

N = # documents on Web – estimated 
nti = # docs on Web containing term ti  - estimated 
R = # documents in user browser history 
rti = # docs in user browser history that contain term ti 
 
 

WmodBM25(ti) = 
  

        ( (rti + 0.5)(N – nti + 0.5) ) 
 

        ( (nti + 0.5)(R - rti + 0.5) )  
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Personalizing Web Search Using Long-term Browsing History, cont  

Documents 

•  Characterization 
– words in snippet 
– original rank by Google search 

•  Scoring 
– best performing: language-based model 

•  based on content (terms) 
•  adjustments for 

– URLs previously visited 
– original rank of snippet in search 
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Scoring a snippet 

Nsi= # unique words in snippet si 

rsi = rank of snippet si in original search results 
ni = # previous visits by user to web page with snippet si 
w(tk) = weigth of term tk in user profile 
wtotal = sum of all term weights in user profile 
 

scorelang. model (si) = Σk=0 log ( (w(tk) +1)/wtotal) 
 
•  modif. for URLs previously visited:   

scorew/URL(si)=  score(si)*(1+α*ni)      parameter α 
 

•  modif to acct. for orig. rank:   
scorew/orig(si) = score(si)*( 1/(1+log (rsi)) ) 
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Nsi 
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Personalizing Web Search Using Long-term Browsing History   
Evaluation 

 
•  “offline” evaluation:  

–  relevance judgments by volunteers 
– used to select best of algorithmic variations 

•  online evaluation of best variations: 
– add-on to Browser by volunteers 
–  interleave original results (no 

personalization) with results reranked by 
snippet score 

–  record clicks by user – which list from 
41 

Personalizing Web Search Using Long-term Browsing History   
Results 

 
•  Offline: normalized DCG, avg. of 72 queries 

–  Google’s ranking w/out personalization: 0.502 
–  best-performing of variations for reranking: 0.573 

•  Online 
–  8% queries: # clicks from original and reranked same 
–  of rest: 60.5% queries: more clicks from reranked 
                39.5% queries: more clicks from original 

Observation 
•  Reranking can be done completely in browser if 

enough space for data for user profile 42 


