
1

1

Refining and
Personalizing

Searches

Themes

•  Explicit feedback versus search history

•  Personalized history versus crowd
history

2

Refining and Personalizing:
Targets

•  collection
•  focused crawling

•  query ç

•  satisfying documents
–  increase set?

•  ranking ç
3 4

Refine initially: query

•  Help user get better query

•  Commonly, query expansion
–  add synonyms

•  Improve recall
•  Hurt precision?
•  Sometimes done automatically − with care

– Modify based on prior searches same query
•  Not automatic
•  All prior searches - eg. suggested search terms
 vs
•  your prior searches

2

5

Refining after search

•  Use user feedback
or pseudo-feedback

•  Approximate feedback with first results

or implicit feedback
•  e.g. clicks

•  change ranking of current results
•  search again with modified query
•  change ranking for future searches

6

Explicit user feedback

•  User must participate

•  User marks (some) relevant results
 or
•  User changes order of results

– Can be more nuanced than relevant or not
– Can be less accurate than relevant or not

•  Example: User moves 10th item to first
– says 10th better than first 9
– Does not say which, if any, of first 9 relevant

7

Implicit user feedback

•  Click-throughs
– Use as relevance judgment
– Use as reranking:

When click result, moves it ahead of all results
didn’t click that come before it

– Problems?

•  Better implicit feedback signals?

8

User feedback in
classic vector model

•  Run query
– Query represented as vector of term weights

•  User marks top p documents for relevance
p = 10 to 20 “typical”

•  Construct new weights for terms in query
vector
– Modifies query

•  Rerun query
– Could use just on initial results to re-rank

3

9

Deriving new query
for vector model

For collection C of n doc.s
•  Let Cr denote set all relevant docs in collection,

Perfect knowledge Goal:
Vector qopt =
1/|Cr| * (sum of all vectors dj in Cr) -
1/(n- |Cr|) * (sum of all vectors dk not in Cr)
 centroids

10

Deriving new query for vector model:
Rocchio algorithm

Give query q and relevance judgments for a
subset of retrieved docs

•  Let Dr denote set of docs judged relevant
•  Let Dnr denote set of docs judged not relevant

Modified query:
Vector qnew = αq +
β/|Dr| * (sum of all vectors dj in Dr) -
γ/(|Dnr|) * (sum of all vectors dk in Dnr)

For tunable weights α, β, γ

11

Remarks on new query
•  α: importance original query
•  β: importance effect of terms in relevant docs
•  γ: importance effect of terms in docs not relevant

•  Usually terms of docs not relevant are least
important
–  Reasonable values α=1, β=.75, γ=.15

•  Reweighting terms leads to long queries
– Many more non-zero elements in query vector qnew
–  Can reweight only most important (frequent?) terms

•  Most useful to improve recall
•  Users don’t like: work + wait for new results 12

Simple example
user feedback in vector model

•  q = (1,1,0,0)
•  Relevant: d1 = (1,0,1,1)
 d2 = (1,1,1,1)
•  Not relevant: d3=(0,1,1,0)
•  α, β, γ = 1
•  qnew = (1,1,0,0) + (1, 1/2, 1, 1) - (0,1,1,0)
 = (2, 1/2, 0, 1)
Term weights change New term
Observe: Can get negative weights

4

13

Explicit feedback: Re-ranking

•  Can disambiguate within given results
–  jaguar car versus jaguar animal

•  Can modify rankings for future searches

•  Algorithms usually based on machine learning
–  Learn ranking function that best matches partial

ranking(s) given

•  Simpler strategies:
– use for repeat of same search

•  user reorder or select best
•  Google experiment circa 2007

Behavior History
•  Going beyond behavior on same query.

•  Personal history versus Crowd history
– Crowd history

•  Primarily search history
– Google’s claim Bing copies

– Personal history
•  characterize behavior
•  characterize interests: topics
•  what use?

14

Personal History: sources

•  Your searches
•  Your social networks

– Your content
•  Other behavior – browsing, mail?, …

 15

Collaborative history

•  History of people “like” you
•  How get?

– For “free”: social networks
•  friends, lists, …

– Deduce: Crowd history + personal history
•  recommendations

•  How characterize?
•  Shared behaviors
•  Shared topics

16

5

Crowd versus friends

•  Content and properties can be
1.  Yours
2.  Your friends
3.  The crowd’s

•  1 and 2 provide personalization

17 18

Social Network Sites
and

Obtaining Information

Social network sites
•  Catch-all term for

– social networking sites
•  Facebook

– microblogging sites
•  Twitter

– blog sites (for some purposes)

•  Now interested in social networking information
–  friending/following concept
–  not totality of Web
–  not Wikipedia encyclopedia pages
–  yes Wikipedia talk pages? 19

Ways we can use social
networks to find information

•  Search site
•  Aggregate site information to get trends
Ø Use site content as meta-information for

search
Ø Use site properties as meta-information

for search

20

6

Use site content as meta-
information for search

•  disambiguate queries (Teeven et al 2011 suggested)
–  search Twitter with query
–  analyze content of matching tweets to identify most

current, most popular meaning
•  factor in ranking URLs (Dong et. al. 2010 studied)

–  harvest URLs mentioned in tweets
–  associate a URL with tweeted text surrounding it

•  other uses for tweet text?
•  similar analyses of social networking sites such

as Facebook? 21

Use site properties as meta-
information for search

•  interactions: friends, followers, likes, retweets,
more?

•  Uses
–  ranking by popularity of content
–  ranking by influence of author

•  temporal relevance
–  ranking
–  discover URLs faster (Dong et. al. 2010)

22

Recommender Systems

23

Relationship to information
retrieval?

•  Ranked results of query can be
considered recommendations based on
constraints (query) placed by user

24

7

25

Recommender Systems
•  Look at classic model and techniques

–  Items
–  Users
–  Recommend Items to Users

•  Recommend new items based on:
–  similarity to items user liked in past: individual history
“Content Filtering”

–  Liked by other users similar to this user: collaborative
history
“Collaborative Filtering”

–  Liked by other users: crowd history
•  easier case

 26

Recommender System attributes

•  Need explicit or implicit ratings by user
–  Purchase is 0/1 rating

•  Movie tickets
•  Books

•  Have focused category
–  examples: music, courses, restaurants
–  hard to cross categories with content-based
–  easier to cross categories with collaborative-based

•  users share tastes across categories?

27

Content Filtering
•  Items must have characteristics
•  user values item

⇒  values characteristics of item
•  model each item as vector of weights of

characteristics
– much like vector-based IR

•  user can give explicit preferences for
certain characteristics

Buy/no buy prediction method:
similarity with centroid

•  Average vectors of items user bought
– user’s centroid

•  Find similarity of new items to user’s centroid

•  Decide threshold for “buy” recommendation

28

8

29

Example
•  user bought book 1 and book 2
•  Average books bought = (0, 1, 0.5, 0)
•  Score new books

–  dot product gives: score(A) = 0.5; score (B)= 1
•  decide threshold for recommendation

1st person romance mystery sci-fi

book 1 0 1 1 0

book 2 0 1 0 0

new book A 1 .5 0 0

new book B 0 1 0 .2 30

Method issues

•  Centroid best way to build a preference vector?

•  What metric use for similarity between new
items and preference vector?
-  Normalization?

•  What if users give ratings?
-  Centroid per rating value?

•  how include explicit user preferences

•  How determine threshold?

31

Example with explicit user preferences
How use scores of books bought?

Try: preference vector p where component k =
user pref for characteristic k if ≠ 0
avg. comp. k of books bought when user pref =0

 0 pref for user = “don’t care”

p=(0, 1, 0.5, -5)
New scores?

p•A = 0.5
p•B = 0

1st per rom mys sci-fi

user pref 0 1 0 -5

book 1 0 1 1 0

book 2 0 1 0 0

new A 1 .5 0 0

new B 0 1 0 .2

Other methods: machine learning

•  Major alternatives based on classifiers
– Training set: items bought and not bought
– Train classifier – many algorithms
– Classify new item as buy/no buy

•  Observations
– Uses books not bought. Problems?
– Multiple rating values

Can use multiple classes
32

9

33

Limitations of Content Filtering

•  Can only recommend items similar to
those user rated highly

•  New users
–  Insufficient number of rated items

•  Only consider features explicitly
associated with items
– Do not include attributes of user

Applying content filtering
methods to search

•  Characterize documents (info. objects)
–  topic analysis?
– other properties, e.g.:

•  Domain of source
•  Date of publication/update

•  Characterize individuals
–  deduce from properties of objects interact with
–  user provided preferences

34

Applying content filtering
methods to search, cont.

•  Query filters documents to consider
– Convert query to topic-based?

•  Too error prone?

– Modify query to bias towards user’s
preferred topics?

•  Ranking is recommendation
– Use similarity to user’s characterization

35

Example study:
Personalizing Web Search Using Long-term

Browsing History (in WSDM11)

•  Goal: rerank
–  top 50 results from Google query

•  Query is initial filter to get results from Google

•  Strategy:
–  score snippets from search result against user profile
–  rerank based on snippet score

36

10

Personalizing Web Search Using Long-term Browsing History, cont

User Characterization
•  Selection of info

–  list of visited URLs w/ number visits
–  list of past search queries and pages clicked
–  list of terms with weights for content of pages visited

•  Studies selection of methods
–  what sources of terms use

•  body, title tags, metainfo like keywords
–  weights for terms

•  tf-idf
– where get idf?

•  “modified BM25”- a “log odds measure” 37 best

WmodBM25 weighting

N = # documents on Web – estimated
nti = # docs on Web containing term ti - estimated
R = # documents in user browser history
rti = # docs in user browser history that contain term ti

WmodBM25(ti) =

 ((rti + 0.5)(N – nti + 0.5))

 ((nti + 0.5)(R - rti + 0.5))

38

log

Personalizing Web Search Using Long-term Browsing History, cont

Documents

•  Characterization
– words in snippet
– original rank by Google search

•  Scoring
– best performing: language-based model

•  based on content (terms)
•  adjustments for

– URLs previously visited
– original rank of snippet in search

39

Scoring a snippet

Nsi= # unique words in snippet si

rsi = rank of snippet si in original search results
ni = # previous visits by user to web page with snippet si
w(tk) = weigth of term tk in user profile
wtotal = sum of all term weights in user profile

scorelang. model (si) = Σk=0 log ((w(tk) +1)/wtotal)

•  modif. for URLs previously visited:

scorew/URL(si)= score(si)*(1+α*ni) parameter α

•  modif to acct. for orig. rank:
scorew/orig(si) = score(si)*(1/(1+log (rsi)))

40

Nsi

11

Personalizing Web Search Using Long-term Browsing History
Evaluation

•  “offline” evaluation:

–  relevance judgments by volunteers
– used to select best of algorithmic variations

•  online evaluation of best variations:
– add-on to Browser by volunteers
–  interleave original results (no

personalization) with results reranked by
snippet score

–  record clicks by user – which list from
41

Personalizing Web Search Using Long-term Browsing History
Results

•  Offline: normalized DCG, avg. of 72 queries

–  Google’s ranking w/out personalization: 0.502
–  best-performing of variations for reranking: 0.573

•  Online
–  8% queries: # clicks from original and reranked same
–  of rest: 60.5% queries: more clicks from reranked
 39.5% queries: more clicks from original

Observation
•  Reranking can be done completely in browser if

enough space for data for user profile 42

