Searching non-text information objects

Non-text digital objects

- Music
- Speech
- Images
- 3D models
- Video
- ?

- 4

Ways to query for something

- 1. Query by category/ theme
 - easiest work done ahead of time
- 2. Query by describing content
 - text-based query
 - text-based retrieval?
- 3. Query by example
 - "similar to"
 - imprecise example sketch
- query text docs and non-text objects with 2
- don't often do doc search by 3
- big move to do music, images by 3

Query by describing content

- · text-based queries
- · where get text-based content?
 - author labels
 - metadata
 - URLs
 - text near imbedded objects
 - html pages
 - group tagging
 - Flickr

Query by example "content-based search"

- · How represent objects?
 - features of a class of objects (e.g. image)
 - how compare features?
 - what data structures?
 - what computational methods?
- Issues
 - large number of objects
 - accuracy of representation
 - large size of representation
 - complexity of computations

tradeoffs

tradeoffs

Example: content- based image search

7

Features

- typically vector of numbers characterizing object representation
- query and collection in same representation
- "similar to" = close in vector space
 - threshold
 - Euclidean distance?
 - other choices for distance metric

6

First example method: color histogram

- k colors
- Picture as histogram **x**: % pixels each color
- k×k matrix A of color similarity weights
- histogram defines feature vectors
- dist_{histo} $(\boldsymbol{x}, \boldsymbol{y}) = (\boldsymbol{x} \boldsymbol{y})^{t} A(\boldsymbol{x} \boldsymbol{y})$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij} (x_i - y_i) (x_j - y_j)$$

- cross-talk: quadratic terms needed
 - · not Euclidean distance

В

color histograms: reducing complexity

- compute RED_{avg}, GREEN_{avg}, BLUE_{avg}
 over all pixels
- use to construct 3D-vector for picture
- use Euclidean distance
- get close candidates
- examine close candidates with full histogram metric

9

color histograms: observations

- works for certain types of images
 - sunset canonical example
- color histogram global property
- this only small part of work: QBIC system, IBM, 1995

10

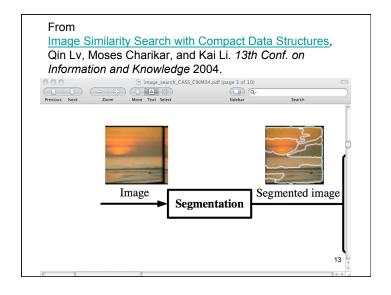
Second example method: a region-based representation

- · region-based features of images
- · query processed in same way as collection
- · space-conscious: use bit vectors
- levels of representation:
 - store bit vector for each region
 - store bit vector for each image
- get close candidates: compare image bit vectors
- · compare top k candidates using region bit vectors

11

Processing images of collection & query

- segment into homogeneous regions
 - 14 dimensional feature vectors
- threshold and transform
 - high-dimensional bit vectors store
 - Hamming distance between regions (XOR)
- build image feature vector
 - n region bit-vectors + weights ⇒
 - 1 m-dimensional real-valued image feature vector
 - L₁ distance between feature vectors
- transform image vector
 - one high-dimensional bit vector for image store



Interesting details

- · Choices of distance:
 - prove that preserve distance relationships when go from real-valued vectors to bit vectors
- · Nature of sampling:

Example: region bit vectors -> 1 m-dim real image vector To get the value for one component of real vector

- 1. choose h positions of region bit vectors (mask)
- 2. choose an h-dim. bit vector as pattern
- For each region bit vector
 If bit values at h positions of region vector equal pattern add weight of region to component of image vector

h (just 1) and m are parameters to choose

15

Components region feature vector

- · color moments 9 dim
 - role similar to histogram
- bounding box region 5 dim
 - In(aspect ratio)
 - In (bounding box size)
 - density = # pixels / bounding box size
 - centroid x
 - centroid y

weight regions proportional to sq. root of area

14

Observations: region based

- Example of one regional method
 - lots of research, lots of places!
- This method uses sampling heavily

 produce bit vectors
- Part of larger project multiple media
 CASS, Princeton, 2004

Third example method: Combining simple ideas

- Goals
 - reduce search space
 - reduce disk I/O cost
- Simple ideas
 - K-means clustering of image database
 - B+ trees
 - heuristic search limits
- New ideas
 - search beyond cluster containing query image
 - limit search within each cluster

17

Image representation

- Inpute: non-texture RGB images
- Process
 - resize to uniform 128x128 pixels
 - transform to different color space
 - · relate to human perception
 - transform to 964 dimensional feature vector
 - · Apply Daubechies wavelet tranformation
 - use several applications

18

Data space representation

- · Cluster data space using K-means
 - search for "most cost effective" K
 - · search space size vs result accuracy
 - · use cluster validity indexes
 - · use majority vote of different indexes
- Find cluster centroids
- For each cluster build a B+ tree
 - B+ tree contains each image in cluster
 - search key for ith image in cluster is distance of feature vector of ith image to cluster center

,

Search space for query

- don't search things know probably too far
- don't limit search to just cluster containing query
- Chose similarity threshhold c for data set
- search images in outer shell of cluster
 - range d-c to d+c for d=distance query to its centroid
 - B+ tree good for range queries
- Same principle whether q in boundry of a cluster or not

but use different c : c_{same}, c_{diff}

Results

- find best 5 matches to a query image
- most interesting result:

resourses used versus value find

- sample numbers (1000 images):
 - average distance
 - K-means & B+ tree 51.887
 - K-means 52.212
 - · linear search 50.881
 - size search space
 - K-means & B+ tree 147
 - K-means 92.39
 - · linear search 900

21

- visually:
 - not beating other methods for image quality

Other Results

- calculate precision of top 5 returns
 - 10 pre-existing image categories
 - crude
 - sample numbers:
 - them 0.568, linear search 0.576

22

Observations

- dynamic capability of B+ trees
- · color based
- no region analysis of images
- image representation and data space representation independent

citation: "Integrating wavelets with clustering and indexing for effective content-based image retrieval" 2012

23

Fourth example method: Image ranking

- · given similarity measures
- · use PageRank style
- define

$$v = \alpha(1/n) + (1-\alpha)Sv$$

- where
 - n is the number of images to be ranked
 - S is a matrix of image-image similarities column normalized, symmetric
 - v is the vector of VisualRanks
 - α is the usual parameter

Testing:Google image search

See

VisualRank: Applying PageRank to Large-Scale Image Search, Yushi Jing and Shumeet Baluja, *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(11), p 1877 - 1890, IEEE, 2008.

- -Table 1
- -Figure 11

25

Image search: Summary of techniques

- Techniques seen
 - aggregate/average features
 - sample
 - course screening followed by more accurate
- Goals
 - reduce dimension
 - reduce complexity of distance metric
 - reduce space

27

Observations: Image rank

- intention to use on images returned by other means
 - e.g. text based
- · graph undirected
- · Deployed?

26

Image search: Commercial search engines

- Use everything you can afford to use
- Text still king!?

DEMOS