Latent Semantic Indexing: Introduction

- Analysis of term-document interaction for corpus of text documents
- Standard vector model: - document vector of term weights
- Goals:
- reduce dimension of document vectors
- uncover latent factors:
- document as vector of factor weights
- uses of theory of linear algebra

Set-up

C the $\mathrm{M} \times \mathrm{N}$ (term \times doc.) matrix of non-negative weights

- of rank r ($r \leq \min (M, N)$)
- documents are columns of C
consider CC^{\top} and $\mathrm{C}^{\top} \mathrm{C}$:
- symmetric,
- share the same eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$
$-\lambda_{1}, \lambda_{2}, \ldots$ are indexed in decreasing order
- $C^{\top} C(i, j)$ measures similarity documents i and j
- $\mathrm{CC}^{\top}(\mathrm{i}, \mathrm{j})$ measures strength co-occurrence terms i and j

Use Singular Value Decomposition (SVD)

Theorem:

$\mathrm{M} \times \mathrm{N}$ matrix C of rank r has a
singular value decomposition $\quad \mathrm{C}=\mathrm{U} \Sigma \mathrm{V}^{\top}$
Where:
U M×r matrix
with columns $=$ orthonormal eigenvectors of CC^{\top}
$\vee \mathrm{N} \times \mathrm{r}$ matrix
with columns $=$ orthonormal eigenvectors of $\mathrm{C}^{\top} \mathrm{C}$
$\Sigma r \times r$ diagonal matrix:
$\Sigma(\mathrm{i}, \mathrm{i})=\sqrt{\lambda_{i}}$ for $1 \leq \mathrm{i} \leq r$
$\Sigma(\mathrm{i}, \mathrm{j})=0$ otherwise
$\sqrt{ } \lambda_{\mathrm{i}}$ called singular values

Reduce Rank

- Reduce rank of Σ from r to k keep only k largest singular values
Σ_{K} is $M \times N$ diagonal matrix: $\Sigma(i, i)=\sqrt{\lambda_{i}}$ for $1 \leq i \leq k$ $\Sigma(\mathrm{i}, \mathrm{j})=0$ otherwise

Reduced dimension matrices

7

Reduced Rank Approximation of C

- Approximation:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{k}}=\mathrm{U}_{\mathrm{k}} \mathrm{~V}^{\top} \\
{[\mathrm{M} \times \mathrm{N}] \quad[\mathrm{M} \times r][\mathrm{r} \times r][\mathrm{r} \times \mathrm{N}]}
\end{gathered}
$$

- Theorem:
C_{k} is the best rank-k approximation to C under the least square fit (Frobenius) norm

$$
=\sqrt{\sum M_{i=1} \sum_{j=1}\left(C(i, j)-C_{k}(i, j)\right)^{2}}
$$

Semantic Interpretation

- remaining k dimensions: k factors
- View $\mathrm{V}_{\mathrm{k}}{ }^{\top}$ as a representation of documents in the k-dimensional space
- View $U_{k}{ }^{\top}$ as a representation of terms in the k-dimensional space
- Σ_{k} scales between them - strength of each factor
- find some semantic relationship?
- "concept space"?
- correlating terms to find structure
- synonomy
- polysomy
"people choose same main terms <20\% time"

Using the Approximation

- $\mathrm{V}_{\mathrm{k}}{ }^{\top}$ as a representation of documents in a k dimensional space

$$
C_{k}=\left(U_{k} \Sigma_{k} V_{k}^{\top}\right)
$$

$$
\begin{aligned}
& C_{k}=\left(U_{k} \Sigma_{k} V_{k}^{\prime}\right) \\
& \left(\Sigma_{k}\right)^{-1} U_{k}^{\top} C_{k}=\left(\Sigma_{k}\right)^{-1} U_{k}^{\top} U_{k} \Sigma_{k} V_{k}^{\top}=V_{k}^{\top}
\end{aligned}
$$

- $\mathrm{C}_{\mathrm{k}}{ }^{\top} \mathrm{C}_{\mathrm{k}}=\left(\mathrm{U}_{\mathrm{k}} \Sigma_{\mathrm{k}} \mathrm{V}_{\mathrm{k}}{ }^{\top}\right)^{\top}\left(\mathrm{U}_{\mathrm{k}} \Sigma_{\mathrm{k}} \mathrm{V}_{\mathrm{k}}{ }^{\top}\right)$
$=\left(V_{k} \Sigma_{k}^{\top} U_{k}^{\top}\right)\left(U_{k} \Sigma_{k} V_{k}^{\top}\right)$
$=V_{k}\left(\Sigma_{k}\right)^{2}\left(V_{k}\right)^{\top} \quad$ compares documents

$$
\text { recalling }\left(\mathrm{V}_{\mathrm{k}}^{\top}\right)\left(\mathrm{V}_{\mathrm{k}}\right)=\left(\mathrm{U}_{\mathrm{k}}^{\top}\right)\left(\mathrm{U}_{\mathrm{k}}\right)=\mathrm{I}
$$

Remember C_{k} is still $\mathrm{M} \times \mathrm{N}$ but is rank-k approximation $\quad 9$

Querying with the Approximation

- Transform query vector q into rank-k space
- Use same transformation as for new document:

$$
\left(\Sigma_{\mathrm{k}}\right)^{-1}\left(\mathrm{U}_{\mathrm{k}}\right)^{\top} \boldsymbol{q}=\boldsymbol{q}_{\mathrm{k}}
$$

recalling $\left(V_{k}^{\prime}{ }^{\top}\right)\left(V_{k}^{\prime}\right)=\left(U_{k}^{\prime}{ }^{\top}\right)\left(U_{k}^{\prime}\right)=I$

Adding a new document

add new document $\boldsymbol{d}^{\text {new }}$ to $\mathrm{C}_{\mathrm{k}}=>$ add column $\boldsymbol{d}_{\mathrm{k}}{ }^{\text {new }}$ to $\mathrm{V}_{\mathrm{k}}{ }^{\top}$ Transform $\mathbf{d}^{\text {new }}$ into the k-dimensional space version $\boldsymbol{d}_{\mathbf{k}}{ }^{\text {new }}$

$$
\mathrm{V}_{\mathrm{k}}^{\top}=\left(\Sigma_{\mathrm{k}}\right)^{-1}\left(\mathrm{U}_{\mathrm{k}}\right)^{\top} \mathrm{C}_{\mathrm{k}} \quad \Rightarrow \quad\left(\Sigma_{\mathrm{k}}\right)^{-1}\left(\mathrm{U}_{\mathrm{k}}\right)^{\top} \boldsymbol{d}^{\text {new }}=\boldsymbol{d}_{\mathrm{k}}^{\text {new }}
$$

$u_{M 1}$ \qquad

M_{k}

$\Sigma_{k}^{\prime}{ }_{k}$	$\mathrm{V}_{k}^{\prime}{ }^{\top}$ $k \times k$
$k \times(\mathrm{N}+1)^{2}$	10

Original LSI paper:

Deerwester, Dumais, et. al. Indexing by Latent Semantic Analysis Journal of the Society for Information Science, 41(6), 1990, 391-407.

Example from that paper follows

Deerwester, Dumais et. al. example, cont.:

Matrix $\mathrm{V}_{\mathrm{k}}{ }^{\top}$ for $\mathrm{k}=2$
$\begin{array}{lllllllll}0.20 & 0.61 & 0.46 & 0.54 & 0.28 & 0.00 & 0.02 & 0.02 & 0.08\end{array}$ $\begin{array}{llllllllll}-0.06 & 0.17 & -0.13 & -0.23 & 0.11 & 0.19 & 0.44 & 0.62 & 0.53\end{array}$

Summary

- LSI is a specific application of SVD and rank reduction
- terms, documents, concepts
- Gives reduced-rank and reduced-size approximation to C
- LSI can be viewed as a preprocessor for - query evaluation
- clustering

Remarks

- sparse C gives dense C_{k}
- approximations
- SVD computation can be costly
- do once (or rarely)

