Social Networks and Ranking

Hypertext

- document or part of document links to other parts or other documents
- construct documents of interrelated pieces
- relate documents to each other
- pre-dates Web
- Web "killer app."

Generalized Social Networks

- Represent relationship between entities
- paper cites paper
-html page links to html page $\}$ directed
- A supervises B graph
- A and B are friends
- papers share an author
- A and B are co-workers

How use links to improve information search?

- use structure to compute score for ranking
- include more objects to rank - redefines "satisfying" of query?
- add to the content of a document
\triangleleft can deal with objects of mixed types - images, PDF, ...

Scoring using structure

- Ideas

1. link to object suggests it valuable object
2. distance between objects in graph represents degree of relatedness
reachable by all in 2 links

Indegree

- Indegree = number of links into a node
- Most obvious idea:
higher indegree => better node
- Doesn' t work well
- Need some feedback in system
- Leads us to Page and Brin' s PageRank

Pursuing linking and value

- Intuition: when Web page points to another Web page, it confers status/authority/ popularity to that page
- Find a measure that captures intuition
- Not just web linking
- Citations in books, articles

- others?

PageRank

- Algorithm that gave Google the leap in quality
- link structure centerpiece of scoring
- Framework
- Given a directed graph with n nodes
- Assign each node a score that represents its importance in structure: PageRank: pr(node)

Conferring importance

Core ideas:

$>$ A node should confer some of its importance to the nodes to which it points

- If a node is important, the nodes it links to should be important
> A node should not transfer more importance than it has

Attempt 1

Refer to nodes by numbers $1, \ldots, n$ (arbitrary numbering) Let t_{i} denote the number of edges out of node i (outdegree) Node i transfers $1 / \mathrm{t}_{\mathrm{i}}$ of its importance on each edge out of it

Define
$\operatorname{pr}_{\text {new }}(\mathbf{k})=\sum_{\text {iwith edge from itok }}\left(\mathbf{p r}(\mathbf{i}) / \mathbf{t}_{\mathbf{i}}\right)$ Iterate until converges

Problems

- Sinks (nodes with no edges out)

- Cyclic behavior

Attempt 2

Random walk model

- Attempt 1 gives movement from node to linked neighbor with probability 1 /outdegree
- Add random jump to any node
$\mathrm{pr}_{\text {new }}(\mathrm{k})=\alpha / \mathrm{n}+(1-\alpha) \sum_{\mathrm{i} \text { with edge from ito } \mathrm{k}}\left(\mathrm{pr}(\mathrm{i}) / \mathrm{t}_{\mathrm{i}}\right)$
$-\alpha$ parameter chosen empirically
- Break cycles
- Escape from sinks

Normalized?

- Would like $\sum_{1 \leq k \leq n}(\operatorname{pr}(k))=1$
- Consider $\sum_{1 \leq k \leq n}\left(\mathbf{p r}_{\text {new }}(k)\right)$

*inner sum \sum_{i} over incoming *inner sum \sum_{k} over outgoing edges for one k

Problem for desired normalization

- Have
$\sum_{1 \text { sksn }}\left(\mathrm{pr}_{\text {new }}(\mathrm{k})\right)=\alpha+(1-\alpha) \sum_{i}$ with edge from $\left.i \operatorname{pr}(\mathrm{i})\right)$
- Missing pr(i) for nodes with no edges from them - sinks!
- Solution: add n edges out of every sink
- Edge to every node including self
- Gives $1 / n$ contribution to every node

Gives desired normalization
If $\sum_{1 \leq k \leq n}\left(\mathrm{pr}_{\text {initial }}(\mathrm{k})\right)=1$
then $\sum_{1 \text { sknn }}(\operatorname{pr}(k))=1$

Eigenvector Formulation

- $\boldsymbol{p r}=(\alpha / \mathrm{n}, \alpha / \mathrm{n}, \ldots \alpha / \mathrm{n})^{T}+(1-\alpha) L^{\top} \boldsymbol{p r}$
$=(\alpha / n) \mathrm{Jpr}+(1-\alpha) L^{\top} p r$
$=\left((\alpha / n) J+(1-\alpha) L^{\top}\right) p r$
$=(\quad \mathrm{M}) \boldsymbol{p r}$
- J is the matrix of all 1 's
- Jpr $=(1,1, \ldots 1)^{\top}$ because $\sum_{1 \leq k \leq n}(p r(k))=1$
- $p r$ is the principal eigenvector of M $A \boldsymbol{v}=\lambda \boldsymbol{v}, \lambda=1$

Matrix formulation

- Let E be the n by n adjacency matrix
$E(i, k)=1$ if there is an edge from node i to node k $=0$ otherwise
- Define new matrix L:

For each row i of $E(1 \leq i \leq n)$
If row i contains $t_{i}>0$ ones, $L(i, k)=\left(1 / t_{i}\right) E(i, k), 1 \leq k \leq n$ If row i contains 0 ones, $L(i, k)=1 / n, 1 \leq k \leq n$

- Vector pr of PageRank values defined by

$$
p r=(\alpha / \mathrm{n}, \alpha / \mathrm{n}, \ldots \alpha / \mathrm{n})^{T}+(1-\alpha) L^{\top} p r
$$

- has a solution representing the steady-state values $\operatorname{pr}(\mathrm{k})$

Calculation Choices

1. $p r=M p r$: Find principle eigenvector of M solves n simultaneous equations: $\operatorname{pr}(\mathrm{k})=\alpha / \mathrm{n}+(1-\alpha) \sum_{1 \text { sisn }} \mathrm{L}(\mathrm{i}, \mathrm{k}) \operatorname{pr}(\mathrm{i})$
2. Use iterative calculation - power method (where we started)
-Initialize $\mathrm{pr}_{\text {initial }}(\mathrm{k})=1 / \mathrm{n}$ for each node k
-Until converges \{
For each node k

$$
\operatorname{pr}_{\text {new }}(\mathrm{k})=\alpha / \mathrm{n}+(1-\alpha) \sum_{1 \leq i \leq n} L(\mathrm{i}, \mathrm{k}) \operatorname{pr}(\mathrm{i})
$$

For each node k

$$
\mathrm{pr}(\mathrm{k})=\mathrm{pr}_{\text {new }}(\mathrm{k})
$$

\}
16

Power method

- Convergence
- In practice choose convergence criterion
- e.g. stop iteration when
$\operatorname{Max}_{\mathrm{k}=1}^{\mathrm{n}}\left(\mid \operatorname{pr} _\right.$new $\left.(\mathrm{k})-\mathrm{pr}(\mathrm{k}) \mid\right)<\varepsilon$ $\varepsilon=10^{-3} ? 10^{-4} ? 10^{-5} ?$
- Choice α
- No single best value
- 1- α determines rate of convergence

Second eigenvalue
$-\alpha=0.15$ common

- gives 10^{-4} accuracy in about 60 iterations regardless of size of graph [Chu; Wu]

HITS

Hyperlink Induced Topic Search

- Second well-known algorithm
- By Jon Kleinberg while at IBM Almaden Research Center
- Same general goal as PageRank
- Distinguishes 2 kinds of nodes
- Hubs: resource pages
- Point to many authorities
- Authorities: good information pages
- Pointed to by many hubs

PageRank Observations

- Can be calculated for any directed graph
- Google calculates on entire Web graph
- query independent scoring
- Huge calculation for Web graph
- precomputed
- 1998 Google published:
- 52 iterations for 322 million links
- 45 iterations for 161 million links
- PageRank must be combined with querybased scoring for final ranking
- Many variations
- What Google exactly does secret
- Can make some guesses by results

Mutual reinforcement

- Authority weight node j: a(j)
- Vector of weights a
- Hub weight node j: h(j)
- Vector of weights h
- Update:
$a_{\text {new }}(k)=\sum_{i \text { with edge from } i \text { to } k}(h(i))$
$h_{\text {new }}(k)=\sum_{j \text { with edge from } k \text { to } j}(\mathrm{a}(\mathrm{j}))$

Mutual reinforcement

- Authority weight node j: a(j)
- Vector of weights a
- Hub weight node j: h(j)
- Vector of weights \boldsymbol{h}
- Update:
$a_{\text {new }}(k)=\sum_{i \text { with edge from } i \text { to } k}$
$\mathrm{h}_{\text {new }}(\mathrm{k})=\sum_{\mathrm{j} \text { with edge from } \mathrm{k} \text { to } \mathrm{j}}(\mathrm{a}(\mathrm{j}))$

Matrix formulation

Steady state:

$$
\begin{array}{ll}
a=E^{\top} h & a=E^{\top} E a \\
h=E a & h=E E^{\top} h
\end{array}
$$

Interpretation?

Mutual reinforcement

- Authority weight node j : $\mathrm{a}(\mathrm{j})$
- Vector of weights a
- Hub weight node j: h(j)
- Vector of weights \boldsymbol{h}
- Update:
$a_{\text {new }}(k)=\sum_{i \text { with edge from } i \text { to } k}$
$\mathrm{h}_{\text {new }}(\mathrm{k})=\sum_{\mathrm{j} \text { with edge from } \mathrm{k} \text { to } \mathrm{j}}$

Look inside

- $\mathrm{E}^{\top}(\mathrm{i}, \mathrm{k}) 1$ where $\mathrm{k} \rightarrow \mathrm{i}$
- $\mathrm{E}(\mathrm{k}, \mathrm{j}) 1$ where $\mathrm{k} \rightarrow \mathrm{j}$
- Row iof E^{\top} :

1 's where k 's $\rightarrow \mathrm{i}$

- Column j of E : 1's where k's \rightarrow j
- $E^{\top} E(i, j)$ is number of nodes pointing to both i and j
-E(i,k) 1 where $i \rightarrow k$
- $E^{\top}(k, j) 1$ where $j \rightarrow k$
- Row i of E:

1's where i \rightarrow k's

- Column j of E^{\top} 1's where $\boldsymbol{j} \rightarrow \mathrm{k}$'s
- $\mathrm{EE}^{\top}(\mathrm{i}, \mathrm{j})$ is number of nodes pointed to by both i and ${ }^{24}$

Matrix formulation

Steady state:

$$
\begin{array}{ll}
\boldsymbol{a}=E^{\top} \boldsymbol{h} & \boldsymbol{a}=E^{\top} E \boldsymbol{a} \\
\boldsymbol{h}=\mathrm{E} \boldsymbol{a} & \boldsymbol{h}=E E^{\top} \boldsymbol{h}
\end{array}
$$

Interpretation:

- $E^{\top} E(i, j)$: number nodes point to both node i and node j
- "Co-citation"
- $E E^{\top}(\mathrm{i}, \mathrm{j})$: number nodes pointed to by both node i and node j
- "Bibliographic coupling"

Use of HITS

original use after find Web pages satisfying query:

1. Retrieve documents satisfy query and rank by termbased techniques
2. Keep top c documents: root set of nodes

- c a chosen constant - tunable

3. Make base set:
a) Root set using links
b) Plus nodes pointed to by nodes of root set to expand
c) Plus nodes pointing to nodes of root set matches!
4. Make base graph: base set plus edges from Web graph between these nodes
5. Apply HITS to base graph

Iterative Calculation

$\boldsymbol{a}=\boldsymbol{h}=(1, \ldots, 1)^{\top}$
While (not converged) \{
$a_{\text {new }}=$ Eth t
$\boldsymbol{h}_{\text {new }}=E a$
$a=a_{\text {new }} /\left\|a_{\text {new }}\right\| \quad$ normalize to unit vector
$\boldsymbol{h}=\boldsymbol{h}_{\text {new }} /\left\|\boldsymbol{h}_{\text {new }}\right\| \quad$ normalize to unit vector
\}

Provable convergence by linear algebra

Results using HITS

- Documents ranked by authority score a(doc) and hub score h(doc)
- Authority score primary score for search results
- Heuristics:
- delete all links between pages in same domain
- Keep only pre-determined number of pages linking into root set (~200)
- Findings (original paper)
- Number iterations in original tests ~ 50
- most authoritative pages do not contain initial query terms

Observations

- HITS can be applied to any directed graph
- Base graph much smaller than Web graph
- Kleinberg identified bad phenomena
- Topic diffusion: generalizes topic when expand root graph to base graph
- example: want compilers - generalized to programming

Revisit: How use links in ranking documents?

- use structure to compute score for ranking - PageRank, HITS
- include more objects to rank
- saw in use of HITS
> use anchor text (HTML)
- anchor text labels link
- include anchor text
as text of document pointed to

PageRank and HITS

- designed independently around 1997
- indicates time was ripe for this kind of analysis
- lots of embellishments by others

Anchor text

- HTML text:

All assignments will be made available on
<a href="https://piazza.com/princeton/spring2017/
cos435/home">the Piazza course account.

- Renders as:

All assignments will be made available on
the Piazza course account.

- Anchor text:
"the Piazza course account" is anchor text

Summary

- Link analysis
- a principal component of ranking by modern Web search engines
- must be combined with content analysis
- Extend document content with link info
- anchor text
- text of URLs
- e.g. princeton.edu, aardvarksportsshop.com
- Expand set of satisfying docs using links - less often used

General Framework

- Have set of n features (aka signals) to use in determining ranking score
- Features depend on query:
vector $\Psi\left(d_{i}, q\right)$ of feature values f_{k} for doc d_{i}, query q - eg tf.idf score is feature
- Features are conditioned to be comparable
- Have parameterized function to combine signals
- simple: linear $\alpha_{0}+\sum_{i=1}^{n} \alpha_{i}^{*}\left(f_{i}\right)$
$-\alpha_{i}$ are adjustable weights - how choose?
- intuition
- experimentation
- machine learning

Machine Learning

Many possibilities - overview of one Ordinal Regression Model

- Goal: get comparison of doc.s correct
- capture goal
- Let $\boldsymbol{\omega}$ represent vector $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$
- want $\boldsymbol{\omega}^{\top} \cdot \Psi\left(\mathrm{d}_{\mathrm{i}}, \mathrm{q}\right)-\boldsymbol{\omega}^{\top} \cdot \Psi\left(\mathrm{d}_{\mathrm{j}}, \mathrm{q}\right)>0$ if and only if d_{i} more relevant than d_{i} for query q
- find ω that works
- techniques train on known correct data:
- humans rank a set of documents for various queries

