Social Networks and Ranking

Generalized Social Networks

- Represent relationship between entities
 - paper cites paper
 - html page links to html page
 - A supervises B
 - A and B are friends
 - papers share an author
 - A and B are co-workers

Hypertext

- document or part of document links to other parts or other documents
 - construct documents of interrelated pieces
 - relate documents to each other
- pre-dates Web
- Web “killer app.”

How use links to improve information search?

- use structure to compute score for ranking
- include more objects to rank
 - redefines “satisfying” of query?
- add to the content of a document

- can deal with objects of mixed types
 - images, PDF, …
Scoring using structure

- Ideas
 1. Link to object suggests it valuable object
 2. Distance between objects in graph represents degree of relatedness reachable by all in 2 links

Pursuing linking and value

- Intuition: when Web page points to another Web page, it confers status/authority/popularity to that page
- Find a measure that captures intuition
- Not just web linking
 - Citations in books, articles
 - Others?

Indegree

- Indegree = number of links into a node
- Most obvious idea: higher indegree => better node
- Doesn’t work well
- Need some feedback in system
- Leads us to Page and Brin’s PageRank

PageRank

- Algorithm that gave Google the leap in quality
 - Link structure centerpiece of scoring
- Framework
 - Given a directed graph with \(n \) nodes
 - Assign each node a score that represents its importance in structure: PageRank: \(pr(node) \)
Conferring importance

Core ideas:

- A node should **confer** some of its importance **to the nodes to which it points**
 - If a node is important, the nodes it links to should be important
- A node should **not transfer more importance than it has**

Attempt 1

Refer to nodes by numbers 1, … , n (arbitrary numbering)

Let \(t_i \) denote the number of edges out of node \(i \) (outdegree)

Node i transfers \(1/t_i \) of its importance on each edge out of it

Define

\[
pr_{\text{new}}(k) = \sum_{i \text{ with edge from } i \text{ to } k} (pr(i) / t_i)
\]

Iterate until converges

Problems

- Sinks (nodes with no edges out)
- Cyclic behavior

Normalized?

- Would like \(\sum_{1 \leq k \leq n} (pr(k)) = 1 \)
- Consider \(\sum_{1 \leq k \leq n} (pr_{\text{new}}(k)) \)

\[
\begin{align*}
&= \sum_{1 \leq k \leq n} \left(\frac{\alpha}{n} + (1-\alpha) \sum_{i \text{ with edge from } i \text{ to } k} (pr(i) / t_i) \right) \\
&= \sum_{1 \leq k \leq n} \left(\frac{\alpha}{n} \right) + \sum_{1 \leq k \leq n} \left((1-\alpha) \sum_{i \text{ with edge from } i \text{ to } k} (pr(i) / t_i) \right) \tag{1}
\end{align*}
\]

\[
\begin{align*}
&= \alpha \sum_{1 \leq k \leq n} \sum_{i \text{ with edge from } i \text{ to } k} (pr(i) / t_i) \tag{2}
\end{align*}
\]

\[
\begin{align*}
&= \alpha \sum_{1 \leq i \leq n} \sum_{k \text{ with edge from } i \text{ to } k} \left(\frac{pr(i)}{t_i} \right) \tag{3}
\end{align*}
\]

\[
\begin{align*}
&= \frac{\alpha}{1-t} \sum_{1 \leq i \leq n} \sum_{k \text{ with edge from } i \text{ to } k} (pr(i) / t_i) \tag{4}
\end{align*}
\]

\[
\begin{align*}
&= \frac{\alpha}{1-t} \sum_{1 \leq i \leq n} \sum_{k \text{ with edge from } i \text{ to } k} (pr(i) / t_i) \tag{5}
\end{align*}
\]

Random walk model

- Attempt 1 gives movement from node to linked neighbor with probability \(1/\text{outdegree} \)
- Add random jump to any node

\[
pr_{\text{new}}(k) = \frac{\alpha}{n} + (1-\alpha) \sum_{i \text{ with edge from } i \text{ to } k} (pr(i) / t_i)
\]

- \(\alpha \) parameter chosen empirically

- Break cycles
- Escape from sinks
Problem for desired normalization

- Have
 \[\sum_{1 \leq k \leq n} (pr_{new}(k)) = \alpha + (1-\alpha) \sum_{i \text{ with edge from } i} pr(i) \]
- Missing \(pr(i) \) for nodes with no edges from them
 - sinks!
- Solution: add \(n \) edges out of every sink
 - Edge to every node including self
 - Gives \(\frac{1}{n} \) contribution to every node

Gives desired normalization:
If \(\sum_{1 \leq k \leq n} (pr_{initial}(k)) = 1 \)
then \(\sum_{1 \leq k \leq n} (pr(k)) = 1 \)

Matrix formulation

- Let \(E \) be the \(n \) by \(n \) adjacency matrix
 - \(E(i,k) = 1 \) if there is an edge from node \(i \) to node \(k \)
 - \(= 0 \) otherwise
- Define new matrix \(L \):
 - For each row \(i \) of \(E \) (\(1 \leq i \leq n \))
 - If row \(i \) contains \(t_i > 0 \) ones, \(L(i,k) = \frac{1}{t_i} E(i,k), \ 1 \leq k \leq n \)
 - If row \(i \) contains 0 ones, \(L(i,k) = \frac{1}{n}, \ 1 \leq k \leq n \)
- Vector \(pr \) of PageRank values defined by
 \[pr = (\alpha/n, \alpha/n, \ldots \alpha/n)^T + (1-\alpha) L^T pr \]
- has a solution representing the steady-state values \(pr(k) \)

Calculation Choices

1. \(pr = M pr : \) Find principle eigenvector of \(M \)
 solves \(n \) simultaneous equations:
 \[pr(k) = \alpha/n + (1-\alpha) \sum_{i \text{sink}} L(i,k)pr(i) \]
2. Use iterative calculation - power method
 (where we started)
 - Initialize \(pr_{initial}(k) = 1/n \) for each node \(k \)
 - Until converges {
 For each node \(k \)
 \[pr_{new}(k) = \alpha/n + (1-\alpha) \sum_{i \text{sink}} L(i,k)pr(i) \]
 For each node \(k \)
 \[pr(k) = pr_{new}(k) \]
Power method

- **Convergence**
 - In practice choose convergence criterion
 - e.g. stop iteration when
 \[\text{Max}_{k=1}^{n} |(\text{pr}_{\text{new}}(k) - \text{pr}(k))| < \varepsilon \]
 - \(\varepsilon = 10^{-3}, 10^{-4}, 10^{-5} \)

- **Choice \(\alpha \)**
 - No single best value
 - \(1-\alpha \) determines rate of convergence
 - Second eigenvalue
 - \(\alpha = 0.15 \) common
 - gives \(10^{-4} \) accuracy in about 60 iterations regardless of size of graph [Chu; Wu]

PageRank Observations

- Can be calculated for *any* directed graph
- Google calculates on entire Web graph
 - query independent scoring
- Huge calculation for Web graph
 - precomputed
 - 1998 Google published:
 - 52 iterations for 322 million links
 - 45 iterations for 161 million links
- PageRank must be combined with query-based scoring for final ranking
 - Many variations
 - What Google exactly does secret
 - Can make some guesses by results

HITS

Hyperlink Induced Topic Search

- Second well-known algorithm
- By Jon Kleinberg while at IBM Almaden Research Center
- Same general goal as PageRank
- Distinguishes 2 kinds of nodes
 - Hubs: resource pages
 - Point to many authorities
 - Authorities: good information pages
 - Pointed to by many hubs

Mutual reinforcement

- Authority weight node \(j \): \(a(j) \)
 - Vector of weights \(a \)
- Hub weight node \(j \): \(h(j) \)
 - Vector of weights \(h \)
- Update:
 \[
 a_{\text{new}}(k) = \sum_{i \text{ with edge from } i \text{ to } k} (h(i))
 \]
 \[
 h_{\text{new}}(k) = \sum_{j \text{ with edge from } k \text{ to } j} (a(j))
 \]
Mutual reinforcement

• Authority weight node j: \(a(j) \)
 – Vector of weights \(a \)
• Hub weight node j: \(h(j) \)
 – Vector of weights \(h \)

• Update:
 \[
 a_{\text{new}}(k) = \sum_{i \text{ with edge from } i \text{ to } k} (h(i)) \\
 h_{\text{new}}(k) = \sum_{j \text{ with edge from } k \text{ to } j} (a(j))
 \]

Matrix formulation

Steady state:
\[
\begin{align*}
 a &= E^T h \\
 a &= E^T E a \\
 h &= E a \\
 h &= E E^T h
\end{align*}
\]

Interpretation?

Mutual reinforcement

• Authority weight node j: \(a(j) \)
 – Vector of weights \(a \)
• Hub weight node j: \(h(j) \)
 – Vector of weights \(h \)

• Update:
 \[
 a_{\text{new}}(k) = \sum_{i \text{ with edge from } i \text{ to } k} (h(i)) \\
 h_{\text{new}}(k) = \sum_{j \text{ with edge from } k \text{ to } j} (a(j))
 \]

Look inside

• \(E^T(i,k) \) 1 where \(k \rightarrow i \)
• \(E(k,j) \) 1 where \(k \rightarrow j \)

• Row i of \(E^T \):
 1’s where \(k \rightarrow i \)

• Column j of \(E^T \):
 1’s where \(k \rightarrow j \)

\(E^T E(i,j) \) is number of nodes pointing to both i and j

• \(E(i,k) \) 1 where \(i \rightarrow k \)
• \(E^T(k,j) \) 1 where \(j \rightarrow k \)

• Row i of \(E \):
 1’s where \(i \rightarrow k \)’s

• Column j of \(E^T \):
 1’s where \(j \rightarrow k \)’s

\(E E^T(i,j) \) is number of nodes pointed to by both i and j
Matrix formulation

Steady state:

\[a = E^T h \]
\[h = E a \]

Interpretation:

- \(E^T E(i,j) \): number nodes point to both node i and node j
 - “Co-citation”
- \(E E^T(i,j) \): number nodes pointed to by both node i and node j
 - “Bibliographic coupling”

Iterative Calculation

\[a = h = (1, \ldots, 1)^T \]

While (not converged) {

\[a_{\text{new}} = E^T h \]
\[h_{\text{new}} = E a \]
\[a = a_{\text{new}} / ||a_{\text{new}}|| \] normalize to unit vector
\[h = h_{\text{new}} / ||h_{\text{new}}|| \] normalize to unit vector

Provable convergence by linear algebra

Use of HITS

original use after find Web pages satisfying query:

1. Retrieve documents satisfy query and rank by term-based techniques
2. Keep top \(c \) documents: root set of nodes
 - \(c \) a chosen constant - tunable
3. Make base set:
 a) Root set
 b) Plus nodes pointed to by nodes of root set
 c) Plus nodes pointing to nodes of root set
4. Make base graph: base set plus edges from Web graph between these nodes
5. Apply HITS to base graph

Results using HITS

- Documents ranked by authority score \(a(\text{doc}) \) and hub score \(h(\text{doc}) \)
 - Authority score primary score for search results
- Heuristics:
 - delete all links between pages in same domain
 - Keep only pre-determined number of pages linking into root set (\(\sim 200 \))
- Findings (original paper):
 - Number iterations in original tests \(\sim 50 \)
 - most authoritative pages do not contain initial query terms
Observations

- HITS can be applied to any directed graph
- Base graph much smaller than Web graph
- Kleinberg identified bad phenomena
 - Topic diffusion: generalizes topic when expand root graph to base graph
 - example: want compilers - generalized to programming

PageRank and HITS

- designed independently around 1997
- indicates time was ripe for this kind of analysis
- lots of embellishments by others

Revisit: How use links in ranking documents?

- use structure to compute score for ranking
 - PageRank, HITS
- include more objects to rank
 - saw in use of HITS

➤ use anchor text (HTML)
 - anchor text labels link
 - include anchor text
 as text of document pointed to

Anchor text

- HTML text:
 All assignments will be made available on

- Renders as:
 All assignments will be made available on
 the Piazza course account.

- Anchor text:
 "the Piazza course account" is anchor text
Using anchor text

“homework” may not occur in content of doc b

terms in doc b for building index:

- homework: anchor
- problem: title 1
- set: title 2

Summary

- Link analysis
 - a principal component of ranking by modern Web search engines
 - must be combined with content analysis
- Extend document content with link info
 - anchor text
 - text of URLs
 - e.g. princeton.edu, aardvarksportsshop.com
- Expand set of satisfying docs using links
 - less often used

General Framework

- Have set of n features (aka signals) to use in determining ranking score
 - Features depend on query:
 - vector $\Psi(d_i, q)$ of feature values f_k for doc d_i, query q
 - eg tf.idf score is feature
 - Features are conditioned to be comparable
- Have parameterized function to combine signals
 - simple: linear $\alpha_0 + \sum_{i=1}^n \alpha_i^*(f_i)$
 - α_i are adjustable weights - how choose?
 - intuition
 - experimentation
 - machine learning

Ranking documents w.r.t. query

query

anchor text

link analysis + doc. features

personal information

historic information

words in doc + word features

scores of documents for query - use to rank

Secret recipe
Machine Learning

Many possibilities – overview of one

Ordinal Regression Model

- Goal: get comparison of docs correct
- capture goal
 - Let $\mathbf{\omega}$ represent vector $[\alpha_1, \ldots, \alpha_n]$
 - want $\mathbf{\omega}^T \Psi(d_i, q) - \mathbf{\omega}^T \Psi(d_j, q) > 0$ if and only if d_i more relevant than d_j for query q
 - find $\mathbf{\omega}$ that works
- techniques **train** on known correct data:
 - humans rank a set of documents for various queries

Ranking documents w.r.t. query

- **Query**
- **Secret recipe**
- **link analysis + doc. features**
- **personal information**
- **historic information**
- **anchor text**
- **words in doc + word features**
- **scores of documents for query - use to rank**