
1

1

Storing the index
and

Using the index
to evaluate queries

2

Review: Inverted Index
•  For each term, keep list of document

entries, one for each document in which
it appears: a postings list
– Document entry is list of positions at which

term occurs and attributes for each
occurrence: a posting

•  Keep summary term information
•  Keep summary document information

meta-data

3

Consider “advanced search” queries

Content Coordination
•  Phrases
•  Numeric range
•  NOT
•  OR

Document Meta-data
• Language
• Geographic region
• File format
• Date published
• From specific domain
• Specific licensing rights
• Filtered by “safe search”

Issue of efficient retrieval
 4

Basic operations consider

•  One term
•  AND of several terms
•  OR of several terms
•  NOT term
•  proximity

2

5

Basic postings list processing:
Merging posting lists

•  Have two lists must coordinate
– Find shared entries and do “something”
– “something” changes for different

operations
•  Set operations UNION? INTERSECTION?

DIFFERENCE? …
– Filter with document meta-data as process

6

Basic retrieval algorithms
•  One term:

–  look up posting list in (inverted) index
•  AND of several terms:

–  Intersect posting lists of the terms: a list merge
•  OR of several terms:

–  Union posting lists of the terms
–  eliminate duplicates: a list merge

•  NOT term
–  If terms AND NOT(other terms), take a difference
–  a list merge (similar to AND)

•  Proximity
–  a list merge (similar to AND)

7

Merging two unsorted lists

•  Read 2nd list over and over - once for each
entry on 1st list
–  computationally expensive

time O(|L1|*|L2|) where |L| length list L

•  Build hash table on entry values;
 insert entries of one list, then other;
 look for collisions

–  must have good hash table
–  unwanted collisions expensive
–  often can’t fit in memory: disk version

•  Sort lists; use algorithm for sorted lists
–  often lists on disk: external sort
–  can sort in O(|L| log |L|) operations

X

8

Sorted lists
•  Lists sorted by some identifier

–  same identifier both lists; not nec. unique
•  Read both lists in “parallel”

–  Classic list merge:
 (sorted list1 , sorted list2) ⇒ sorted set union
–  General merge: if no duplicates, get time |L1|+|L2|

•  Build lists so sorted
–  pay cost at most once
–  maybe get sorted order “naturally”

•  If only one list sorted, can do binary search of
sorted list for entries of other list
–  Must be able to binary search! - rare!

•  can’t binary search disk

3

Duplicates in sorted lists

•  Sorted on a value vi that is not unique identifier.
•  docID# identifies doc. uniquely

postings list “cat” postings list “dog”
 v1: docIDx v1: docIDx
 v2: docIDk v3: docIDz
 v4: docIDd v4: docIDu
 v4: docIDv v4: docIDd
 v4: dodIDf v4: docIDv
 v5: docIDq v4: docIDp
 v6: docIDw v7: docIDr 9 10

Keys for documents
For posting lists, entries are documents
What value is used to sort?

•  Unique document IDs
–  can still be duplicate documents
–  consider for Web when consider crawling

•  document scoring function that is
independent of query
–  PageRank, HITS authority
–  sort on document IDs as secondary key
–  allows for approximate “highest k” retrieval

•  approx. k highest ranking doc.s for a query

11

Keys within document list

Processing within document posting

•  Proximity of terms
–  merge lists of terms occurrences within same doc.

•  Sort on term position

12

Computing document score

1.  “On fly”- as find each satisfying
document

2.  Separate phase after build list of
satisfying documents

•  For either, must sort doc.s by score

4

13

Web query processing: limiting size
•  For Web-scale collections, may not process

complete posting list for each term in query
–  at least not initially

•  Need docs sorted first on global (static) quantity
–  why not by term frequency for doc?

•  Only take first k doc.s on each term list
–  k depends on query - how?
–  k depends on how many want to be able to return

– Google: 1000 max returns
–  Flaws w/ partial retrieval from each list?

–  Other limits? query size
– Google: 32 words max query size

14

Limiting size with term-based sorting
•  Can sort doc.s on postings list by score of term

–  term frequency + …

•  Lose linear merge - salvage any?
•  Tiered index:

–  tier 1: docs with highest term-based scores, sorted
by ID or global quantity

–  tier 2: docs in next bracket of score quality, sorted
–  etc.
–  need to decide size or range of brackets

•  If give up AND of query terms, can use idf too
–  only consider terms with high idf = rarer terms

15

Data structure for inverted index?

How access individual terms and each
associated postings list?

Assume a dictionary entry for each term

points to its posting list

Last time

•  Postings lists stored as lists
•  Query processing based on merge-like

operations on postings lists
– action on duplicates

•  Use of classic linear-time list merge
algorithms:
– postings lists sorted by a static value
– build hash table; duplicates collide

•  Disk properties
16

5

Today

•  Data structures for dictionary
– how accessing postings lists
– disk access costs

•  Constructing inverted index

17 18

Data structure for dictionary?
•  Sorted array:

–  binary search IF can keep in memory
–  High overhead for additions

•  Hashing
–  Fast look-up
–  Collisions

•  Search trees: B+-trees
–  Maintain balance - always log look-up time
–  Can insert and delete

19 List for “ace”
adapted from slide for Database Management Systems

by authors R. Ramakrishnan and J. Gehrke

Example B+ Tree
order = 2: 2 to 4 search keys per interior node

ace ad

Root

dog

dye egg

cad call dog … dye … … … …. … …

cab bill

bit

pig heart soap

bat bee bill boy brie cat cell

…

dune eel

…

List for “ad”
List for “bat”

… … …
List for “eel”

…
…

…

leaves

…

…

20

B+- trees
•  All index entries are at leaves
•  Order m B+ tree has m+1 to 2m+1 children for

each interior node
–  except root can have as few as 2 children

•  Look up: follow root to leaf by keys in interior
nodes

•  Insert:
–  find leaf in which belongs
–  If leaf full, split
–  Split can propagate up tree

•  Delete:
–  Merge or redistribute from too-empty leaf
–  Merge can propagate up tree

6

21

•  Each leaf is file page (block) on disk
•  Each interior node is file page on disk
•  Keep top of tree in buffer (RAM)
•  Typical sizes:

– m ~ 200;
– average fanout ~ 267

• Height 4 gives ~ 5 billion entries

Disk-based B+ trees for large data sets

22

•  Save space

•  Each interior node key is shortest prefix
of word needed to distinguish which
child pointer to follow

• Allows more keys per interior node
• higher fanout

– fanout determined by what can fit
– keep at least 1/2 full

prefix key B+ trees

Revisit hashing - on disk

•  hash of term gives address of bucket
on disk

•  bucket contains pairs
(term, address of first page of postings list)

•  bucket occupies one file page

23 24

Now

How construct inverted index
from “raw” document collection?

•  Don’t worry about getting into final index

data structure

7

25

Preliminary decisions
•  Define “document”: level of granularity?

– Book versus Chapter of book
–  Individual html files versus combined files

that composed one Web page

•  Define “term”
–  Include phrases?

•  How determine which adjacent words -- or all?
– Stop words?

26

Pre-processing text documents
•  Give each document a unique ID: docID
•  Tokenize text

–  Distinguish terms from punctuation, etc.
•  Normalize tokens

–  Stemming
•  Remove endings: plurals, possessives, “ing”,

– cats -> cat; accessible -> access
•  Porter’s algorithm (1980)

–  Lemmatization
•  Use knowledge of language forms

– am, are, is -> be
•  More sophisticated than stemming

 (See Intro IR Chapter 2)

27

Construction of posting lists

•  Overview
–  “document” now means preprocessed document
–  One pass through collection of documents
–  Gather postings for each document
–  Reorganize for final set of lists: one for each term

•  Look at algorithms when can’t fit everything in
memory
–  Main cost file page reads and writes

•  “file page” minimum unit can read from drive
– May be multiple of “sector” device constraint

28

Memory- disk management

•  Have buffer in main memory (RAM)
– Size = B file pages
– Read from disk to buffer, page at a time

•  Disk cost = 1 per page
– Write from buffer to disk, page at at time

•  Disk cost = 1 per page

8

29

Sorting List on Disk - External Sorting
General techique

•  Divide list into size-B blocks of
contiguous entries

•  Read each block into buffer, sort, write
out to disk

•  Now have ⎡L/B⎤ sorted sub-lists
where L is size of list in file pages

•  Merge sorted sub-lists into one list
– How?

30

Merging Lists on Disk:
General technique

•  K sorted lists on disk to merge into one
•  If K+1 <= B:

–  Dedicate one buffer page for output
–  Dedicate one buffer page for each list to merge

input from different lists
–  Algorithm:

Fill 1 buffer page from each list on disk
Repeat until merge complete:

Merge buffer input pages to output buffer pg
When output buffer pg full, write to disk
When input buffer pg empty, refill from its list

31

•  If K+1 > B:
– Dedicate one buffer page for output
– B-1 buffer page for input from different lists
– Define “level-0 lists”: lists need to merge

32

If K+1 > B: Algorithm
j=0
Repeat until one level-j list:

{  Group level-j lists into groups of B-1 lists
// ⎡K/(B-1)⎤ groups for j=0

 For each group, merge into one level-(j+1) list by:
 { Fill 1 buffer page from each level-j list in group
 Repeat until level-j merge complete:

 Merge buffer input pages to output buffer pg
 When output buffer pg full,
 write to group’s level-(j+1) list on disk
 When input buffer pg empty, refill from its list

 }
 j++
}

9

Number of file page read/writes?

•  Merge lists?
•  External sort?

33

So far

•  Preprocessing the collection
•  Sorting a list on disk (external sorting)

– Cost as disk I/O

Now look at actually building

34

35

Index building Algorithm:
 “Block Sort-based”

1. Repeat until entire collection read:
–  Read documents, building
 (term, <attributes>, doc) tuples until buffer full

•  one tuple for each occurrence of a term
–  Sort tuples in buffer by term value as primary,

doc as secondary
•  Tuples for one doc already together
•  Use sort algorithm that keeps appearance

order for = keys: stable sorting
–  Build posting lists for each unique term in buffer

•  Re-writing of sorted info
–  Write partial index to disk 36

continuing “Blocked Sort-based”

2.  Merge partial indexes on disk into
full index

•  Partial index lists of (term:postings list)
entries must be merged

•  Partial postings lists for one term must be
merged

– Concatenate
•  Keep documents sorted within posting list

•  If postings for one document broken across
partial lists, must merge

10

37

Remarks: Index Building
•  As build index:

– Build dictionary
– Aggregate Information on terms, e.g.

document frequency
•  store w/ dictionary

– What happens if dictionary not fit in main
memory as build inverted index?

•  May not actually keep every term occurrence,
maybe just first k.
–  Early Google did this for k=4095. Why?

38

What about anchor text?

•  Complication
•  Build separate anchor text index

– strong relevance indicator
– keeps index building less complicated

39

Other separate indexes?
Examples
•  Other strong relevance indicators

– abstracts of documents
•  compare listing abstract positions 1st in main

index
–  tiered indexes based on term weights

•  types of documents
– volatility

– news articles
– blogs
– etc.

