Distributed computing:
Index building and use

Distributed computing Goals

Distributing computation across
several machines to

» Do one computation faster - latency

* Do more computations in given
time - throughput
* Tolerate failure of 1+ machines

Distributing computations

Ideas?
=> Finding results for a query?
* Building index?

* Goals
— Keep all machines busy

— Be able to replace badly-behaved machines
seamlessly!

Distributed Query Evaluation:
Strategies

+ Assign different queries to different machines
+ Break up multi-term query: assign different
query terms to different machines
- good/bad consequences?
* Break up lexicon: assign different index terms
to different machines?
— good/bad consequences?
+ Break up postings lists: Assign different
documents to different machines?
— good/bad consequences?

Keep all machines busy?
Seamlessly replace badly-behaved machines?

Example:
Google query evaluation circa 2002

+ Parallelize computation
— distribute documents randomly to pieces of
index
» Pool of machines for each piece- choose one
* Why random?

 Load balancing and reliability

— Scheduler machines
« assign tasks to pools of machines
* monitor performance

Google Query Evaluation: Details
circa 2002

» Enter query -> DNS-based directed to one of
geographically distributed clusters

w/in cluster, query directed to 1 Google Web
Server (GWS)

GWS distributes query to pools of machines

* Query directed to 1 machine w/in each pool

Google Query Evaluation: Details
circa 2002

» Enter query -> DNS-based directed to one of
geographically distributed clusters
— Load balance & fault tolerance
— Round-trip time
» w/in cluster, query directed to 1 Google Web
Server (GWS)
— Load balance & fault tolerance
GWS distributes query to pools of machines
— Load sharing
* Query directed to 1 machine w/in each pool
— Load balance & fault tolerance

Issues for distributed documents

* How many take from each pool to get m results?

* Throughput limits?
— each machine does full query evaluation
— disk access limiting constraint?
— distributing index by term instead may help

Distributing computations

v Finding results for a query?
= Building index?

Distributed Index Building

» Can easily assign different documents
to different machines

« Efficient?

» Goals
— Keep all machines busy

— Be able to replace badly-behaved
machines seamlessly!

Google Index Building circa 2003:
MapReduce framework

* programming model
* implementation for large clusters

+ Google introduced for index building and PageRank
“for processing and generating large data sets”

* The Apache Hadoop project developed open-source
software

» Other applications:
— database queries
* join like multi-term query eval.
— statistics on queries in given time period

MapReduce Programming Model

« inputset: {(input key,, value))| 0 =i = input size}
« user chooses type value — e.g. whole document
» output set: {(output key;, valug;)| 0 < i < output size}

* Map (written by user):
(input key, value) —
{(intermed. key;, value))| 0 =< j < Map result size}

» system groups all Map output pairs by intermediate key
(shuffle phase)
 gathers by intermediate key value
« supply to Reduce by iterator

* Reduce (written by user) process intermediate values:
(intermed. key, list of values) — (output key, value) 12

MapReduce for
building inverted index

Input pair: (doclID, contents of doc)

» Map: produce {(term, doclD)} for each
term appearing in doclD

Input to Reduce: (term, doclDs) pairs for
each term

Output of Reduce: (term, sorted list of
doclDs containing that term)
— postings list!

[hors] »

Matrix — Vector multiplication

i, j range over elements of matrix A and vector v
g ranges over chunks of v and strips of A
p ranges over chunks of strips of A

Input: tuples (g, (p, chunk A, chunk v,))
Map input tuple to tuples for i in range of p:
(i, Z (Ajj V) = Xiq) with sum over all j in chunk q:
voand A,
Shuffle gives (i, list of x; , all q)

Reduce to: (i, 2oXiq = Z4Z; in g AjY; = (AV);

Matrix-vector multiplication diagram

A v
chunk 1 T chunk 1 Chunk
of strip 1 of strip k 1
chunk 2 chunk 2 Chunk
of strip 1 of strip k 2

| |
)| o o
! !
Chunk
chunk ¢ chunk ¢ k-1
of strip 1 of strip k Chunk
- k
strip 1 strip 2 strip k-1 strip k

— q ——

Diagram of
computation distribution

See Figure 2.3 (pg 27) in

Mining of Massive Data Sets by Rajaraman,
Leskovec and Ullman

Originally appeared as Figure 1 in

MapReduce: Simplified Data Processing on Large
Clusters by J. Dean and S. Ghemawat,

Comm. of the ACM,vol. 51, no. 1 (2008), pp. 107-113.

MapReduce parallelism

* Map phase and shuffle phase may overlap
» Shuffle phase and reduce phase may overlap

* Map phase must finish before reduce phase
starts

— reduce depends on all values associated with a
given key

MapReduce Fault Tolerance

+ Master fails => restart whole computation

* Worker node fails
— Master detects failure
— must redo all Map tasks assigned to worker
« output of completed Map tasks on failed worker’ s disk
— for failed Map worker, Master
 reschedules each Map task
« notifies reducer workers of change in input location
— for failed Reduce worker, Master
* reschedules each Reduce task

— rescheduling occurs as live workers become available
18

Hadoop

“The Apache Hadoop project
develops open-source software for
reliable, scalable, distributed
computing.

Includes MapReduce

http://hadoop.apache.org/index.html

Remarks

« Google built on large collections of inexpensive
“commodity PCs”
— always some not functioning

» Solve fault-tolerance problem in software
— redundancy & flexibility NOT special-purpose hardware

» Keep machines relative generalists
— machine becomes free =
assign to any one of set of tasks

20

June 2010 New Google index building:
Caffeine

« daily crawl “several billion” documents

» Before:
— Rebuild index: new + existing
— series of 100 MapReduces to build index
— “each doc. spent 2-3 days being indexed”

+ After:
— Each document fed through Percolator:
incremental update of index
— Document indexed 100 times faster (median)
— Avg. age doc. in search result decr. “nearly 50%" ,,

Percolator

Built on top of Bigtable distributed storage

— “tens of petabytes” in indexing system

Provides random access

— Requires extra resources over MapReduce
Provides transaction semantics

— Repository transformation highly concurrent

— Requires some consistency guarantees for data
“Observers” do tasks; write to table

Writing to table creates work for other observers

“around 50" Bigtable op.s to process 1 doc.
22

Bigtable Overview

Distributed database system
— One big, sparse table

— Sorted by row key

Rows partitioned into tablets
— contiguous key space

Tablet servers execute operations
— large number tablet servers: Performance!

Fault tolerance
— replication of data
— transaction log
« server take over for failed server 23

Percolator observers

users write observer code
run distributed across collection of machines
observer “registers” function and set of
columns with Percolator
Percolator invokes function after data written
in one of columns (any row)
— Percolator must find “dirty” cells

« search distributed across machines
— avoid >1 observer for a single column

24

Caffeine versus MapReduce

Caffeine uses “roughly twice as many
resources” to process same crawl rate

New document collection “currently 3x larger
than previous systems”
— Only limit available disk space

Document indexed 100 times faster (median)

If number newly-crawled docs near size index,
MapReduce better

— random lookup v.s. streaming 25

Earlybird: Real-Time Search at Twitter
by many Twitter researchers (2012)

» Designed for properties of tweets
— Handle high rate of queries

— Handle large number updates in real time
* “Flash crowds”
» Update info, eg number of retweets

— Large number concurrent reads and writes
— Time stamp dominant ranking signal

26

Elements

Distributed server architecture
— Tweets hash partitioned across servers

New concurrency management
Customized query processing
Customized inverted index

27

Query processing

» Full Boolean query language
» Results returned most recent first
» Personalized signals in relevance
algorithm (not described)
— User’s local social graph

— “actual query algorithm isn’t particularly
interesting”
“reuse existing Lucene query eval code”

28

Inverted Index

Dictionary
— Hash table on term ID
— Term ID points to tail of postings list

Postings lists

— organized in segments

— Each server has small number segments (12)
— Each segment has small number tweets, < 223
— Only one segment active

— In-active segments read-only ”

Active segment index

Posting is 32-bit integer

— 24 bits doc ID; 8 bits term position

— each occurrence in tweet is new posting
Postings list: pre-allocated integer array
— Dynamic allocation

» Traversing newest first = iterate bkwds
Can traverse bkwds from any point
while concurrently adding new postings
Can binary search for doc ID

— Eliminate need skip pointers 30

In-active segments

Replaces an active segment when filled
One fixed-size integer array

— Dictionary points to different postings lists
Arranged reverse chronologically
Compressed

— Short postings list: as before

— Long postings list:
* uses gaps

* block-based compression
31

Earlybird performance

Compare prior MySQL-based

— 1000 tweets per second indexing

— 12,000 queries per second

Earlybird memory

— Full active index segment (16M tweets) 6.7 GB
— Full in-active index segment ~ 55% above
Queries per second

— 5000 for fully-loaded server (114M tweets)
Tweets per second

— 7000 in “stress test’- heavy query load 3

