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Finding near-duplicate 
documents 
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Duplicate versus near duplicate 
documents 

•  Duplicate = identical? 
•  Near duplicate:   

small structural differences 
• not just content similarity 

•  define “small” 
– date change? 
– small edits? 
– metadata change? 
– other? 
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Applications 

•  Crawling network  - saw last class 
•  Indexing 
•  Returning query results 

– cluster near duplicates;  return 1 
•  Plagiarism 

Different criteria for different applications 
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Framework 

•  Algorithm to assign quantitative degree of 
similarity between documents 

•  Issues 
– What is basic token for documents? 

•  character 
•  word/term 

– What is threshold for “near duplicate”? 
– What are computational costs? 
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Classic document comparison 

•  Edit distance 
– count deletions, additions, substitutions to 

convert Doc1 into Doc2 
– each action can have different cost 
– applications 

•  UNIX “diff” 
•  similarity of genetic sequences 

•  Edit distance algorithm 
– dynamic programming 
–  time O(m*n) for strings length m and n 

Term-based signature with SimHash 
•  represent each doc using vector w of term freq. 
•  each term è random f-dim vector t over {-1, 1}  

–  f a parameter                      (Henzinger uses f=64) 

•  signature s for a document is f-dim bit vector: 
first construct f-dim vector v: 

v(k) = Σ tj(k)*w(j) 
                 terms j 

s: s(k) = 1 if vk > 0, else sk = 0 
•  distance between docs is number of bits different 

– Hamming distance 
•  theory shows similar documents, close signatures 
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Addressing computation cost 

Find duplicates in N docs: general paradigm  
 

1.  Define function f capturing contents of each document 
in one number  

–  f(doc1)-f(doc2) must reflect similarity of doc1, doc2  

            “Hash function”, “signature”, “fingerprint” 
2.  Create <f(doci), ID of doci> pairs 
3.  Sort the pairs 
4.  Recognize duplicate or near-duplicate documents as 

having the same f value or f values within a small 
threshold  

 

Compare: computing similarity score on pairs of docs 8 

Optimistic cost 

A general paradigm to find duplicates in N docs: 
 

1.  Compute function f capturing contents of a 
document in one number     O(|doc|) 

2.  Create <f(doci), ID of doci> pairs  O( Σi=1...N (|doci|) ) 
3.  Sort the pairs     O(N log N ) 
4.  Recognize duplicate or near-duplicate documents 

as having the same f value or f values within a small 
threshold          O(N) 

 

Compare:   
computing similarity score on all pairs of documents   O(N2) 
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General paradigm: details 
1.  Compute function f capturing contents of one document in one 

number 
2.  Create <f(doci), ID of doci> pairs 
3.  Sort the pairs 

4.  Recognize duplicate or near-duplicate 
documents as having the same f value or f 
values within a small threshold  

–  recognize exact duplicates: 
•  threshold = 0 
•  examine documents to verify duplicates 

–  recognize near-duplicates 
Use small “small threshold”  
=> “near duplicate” not transitive 
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“Syntactic clustering” 

We will look at this one example: 
        Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and 

Geoffrey Zweig, Syntactic Clustering of the Web  
        Sixth International WWW Conference, 1997.  
 

•  “syntactic similarity” versus semantic  
Sequences of words 

•  Finding near duplicates 
•  Doc = sequence of words   

Word = Token 
•  Uses sampling 
•  Similarity based on shingles 
•  Does compare documents 
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Shingles 

•  A w-shingle is a contiguous subsequence 
of w words 

•  The w-shingling of doc D, S(D, w) is the 
set of unique w-shingles of D 
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Similarity of docs with shingles 

➤ For fixed w, resemblance of docs A and B : 
r(A, B) = |S(A) ∩ S(B)|    /    |S(A) U S(B)|               

Jaccard coefficient 
 

•  For fixed w, containment of doc A in doc B : 
C(A, B) = |S(A) ∩ S(B)|    /    |S(A)|  
 

•  For fixed w, resemblance distance btwn docs A and B : 
D(A, B) = 1- r(A, B)   

Is a metric (triangle inequality) 
 

Note we are now comparing documents! 



4 

13 

Example 
A: “a rose is red a rose is white”  
4-shingles: 

“a rose is red” 
“rose is red a” 
“is red a rose” 
“red a rose is” 
“a rose is white” 

B: “a rose is white a rose is 
red”  

4-shingles: 
“a rose is white” 
“rose is white a” 
“is white a rose” 
“white a rose is” 
“a rose is red” r(A, B) = 0.25 
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Compare 
A: “a rose is red a rose is white”  
3-shingles: 

“a rose is” 
“rose is red” 
“is red a” 
“red a rose” 
“rose is white” 

B: “a rose is white a rose is 
red”  

3-shingles: 
“a rose is” 
“rose is white” 
“is white a” 
“white a rose” 
“rose is red” r(A, B) = 0.43 
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Sample of shingles   
Want to estimate r and/or  c 
Do this by calculating approximation on a sample of 

shingles for fixed w 
 
•  1-to-1 map each shingle to integer in fixed, large range R 

–  64-bit hash, R=[0, 264-1] 
•  Let Π be a random permutation from R to R 
•  For any S(D) define: 

H(D) =  Set of integer hash values corresponding to 
shingles in S(D) 

Π(D) = Set of permuted values in H(D) 
x(Π, D) = smallest integer in Π(D)  
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Sketch of shingles 
•  Let Π1, …, Πm be m random permutations R → 

R  
–  text:  m=20 

 
The sketch of doc D for Π1, …, Πm is 

ψ(D) = {x(Πi, D) | 1≤ i ≤ m } 
 
doc → set shingles → set integers 

 → m sets permuted integers 
   → m smallest integers: one per permutation  

Sketch is a sampling 
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Approximation of resemblance 

Theorem: 
For random permutation Π: 

r(A, B) = P ( x(Π, A) = x(Π, B) ) 
 

Estimate  P ( x(Π, A) = x(Π, B) ) as  
| ψ(A) ∩ ψ(B) | / m 

 
recall m is # permutations 
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Example: compare 
A: “a rose is red a rose is white”  
3-shingles: 

1“a rose is” 
2“rose is red” 
3“is red a” 
4“red a rose” 
5“rose is white” 

B: “a rose is white a rose is 
red”  

3-shingles: 
“a rose is”  1 
“rose is white”  5 
“is white a”  6 
“white a rose”  7 
“rose is red”  2 r(A, B) = 0.43 

Example mappings 

•  R = [0, 10000] 
•  Let H(i) = i*1000;   1≤i≤7 
•  Let m=5 
•  Define a permutation 

–  Example 
•  Get randval = Math.random() 
•  Compute function of randval and H(i) to get Π(i) 

•  Do 5 times for 5 permutations 
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ψ(A) = {x(Πi, A) | 1≤ i ≤ m } = {568, 1150, 6119, 6880, 1905} 
 
     
Π1:                            Π2:                           Π3: 

 
Π4:                              Π5:  
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568 
1136 
1705 
2273 
2842 
3410 
3979 

 1150 
2301 
3452 
4602 
5753 
6904 
8054 

     

9223 
8447 
7671 
6895 
6119 
5343 
4567 

9376 
8752 
8128 
7504 
6880 
6256 
5633 

2976 
5952 
8929 
1905 
4881 
7858 
834 
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ψ(B) = {x(Πi, B) | 1≤ i ≤ m } = {568, 1150, 4567, 5633, 834} 
     
Π1:                            Π2:                           Π3: 

 
Π4:                              Π5:  
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568  
1136 

222842 
3410 
3979 

 1150 
2301 
5753 
6904 
8054 

     

9223 
8447 
6119 
5343 
4567 

9376 
8752 
6880 
6256 
5633 

2976 
 5952 
4881 
7858 
834 

ψ(A) = {x(Πi, A) | 1≤ i ≤ m } = {568, 1150, 6119, 6880, 1905} 
ψ(B) = {x(Πi, B) | 1≤ i ≤ m } = {568, 1150, 4567, 5633, 834} 
     
Π1:                            Π2:                           Π3: 

 
Π4:                              Π5:  
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568 
1136 
1705 
2273 
2842 
3410 
3979 

 1150 
2301 
3452 
4602 
5753 
6904 
8054 

     

9223 
8447 
7671 
6895 
6119 
5343 
4567 

9376 
8752 
8128 
7504 
6880 
6256 
5633 

2976 
5952 
8929 
1905 
4881 
7858 
834 

Resemblance estimate: 
| ψ(A) ∩ ψ(B) | / m  
=  2/5 = .4 
 

Actual resemblance 
 = 3/7= .43 
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Algorithm used (text’s version) 
1.  Calculate sketch ψ(Di) for every doc Di  

 

2.  Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection: 

i.  Produce list of <shingle value, docID> pairs for all 
shingle values x(Πk, Di) in the sketch for each doc.  

ii.  Sort the list by shingle value 
iii.  Produce all triples <ID(Di), ID(Dj), cti,j> for which cti,j>0 

   This not linear-time for the list of docs for 
one shingle value 

3.  Recognize duplicate, near-duplicate documents: 
resemblance cti,j/m above a large threshold  
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Algorithm cost 
1.  Calculate sketch ψ(Di) for every Di  O( Σim|Di| ) 

 

2.  Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection: 

i.  Produce list of <shingle value, docID> pairs for all 
shingle values x(Πk, Di) in the sketch for each doc.  

ii.  Sort the list by shingle value 
iii.  Produce all triples <ID(Di), ID(Dj), cti,j> for which cti,j>0 

   This not linear-time for the list of docs for 
one shingle value 

3.  Recognize duplicate, near-duplicate documents: 
resemblance cti,j/m above a large threshold  
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Algorithm cost 
1.  Calculate sketch ψ(Di) for every Di  O( Σim|Di| ) 

 

2.  Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection: 

i.  Produce list of <shingle value, docID> pairs for all 
shingle values x(Πk, Di) in the sketch for each doc.  

ii.  Sort the list by shingle value           O(mN log (mN) ) 
iii.  Produce all triples <ID(Di), ID(Dj), cti,j> for which cti,j>0 

   This not linear-time for the list of docs for one 
shingle value 

3.  Recognize duplicate, near-duplicate documents: 
resemblance cti,j/m above a large threshold 
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Algorithm cost 
1.  Calculate sketch ψ(Di) for every Di  O( Σim|Di| ) 

 

2.  Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection: 

i.  Produce list of <shingle value, docID> pairs for all 
shingle values x(Πk, Di) in the sketch for each doc.  

ii.  Sort the list by shingle value           O(mN log (mN) ) 
iii.  Produce all triples <ID(Di), ID(Dj), cti,j> for which cti,j>0 

   This not linear-time for the list of docs for one 
shingle value               O(mN2) 

3. Recognize duplicate, near-duplicate documents: 
resemblance cti,j/m above a large threshold               
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Algorithm cost 
1.  Calculate sketch ψ(Di) for every Di  O( Σim|Di| ) 

 

2.  Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection: 

i.  Produce list of <shingle value, docID> pairs for all 
shingle values x(Πk, Di) in the sketch for each doc.  

ii.  Sort the list by shingle value           O(mN log (mN) ) 
iii.  Produce all triples <ID(Di), ID(Dj), cti,j> for which cti,j>0 

   This not linear-time for the list of docs for one 
shingle value               O(mN2) 

3. Recognize duplicate, near-duplicate documents: 
resemblance cti,j/m above a large threshold  O(N2) 
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Revisit the original paradigm 

A general paradigm to find duplicates in N docs: 
 

1.  Compute function f capturing contents of each 
document in one number     O(|doc|) 

2.  Create <f(doci), ID of doci> pairs  O( Σi=1...N (|doci|) ) 
3.  Sort the pairs     O(N log N ) 
4.  Recognize duplicate or near-duplicate documents 

as having the same f value or f values within a small 
threshold          O(N) 

 

Compare:  computing a similarity score on pairs of 
documents 
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Syntactic Clustering Paradigm 

•  Does compare docs, so not same as paradigm 
we started with, but uses ideas 

•  Contents of doc captured by sketch – a set of 
shingle values 

•  Similarity of docs scored by count of common 
shingle values for docs  

•  Don’t look at all doc pairs, look at all doc pairs 
that share a shingle value 

•  Textbook clusters by similarity threshold  
30 

More efficient : supershingles 

“meta-sketch”  
1.  Sort shingle values of a sketch 
2.  Compute the shingling of the sequence of shingle 

values 
•  Each original shingle value now a token 
•  Gives “supershingles” 

3.  “meta-sketch” = set of supershingles 
One supershingle in common =>  
                                   sequences of shingles in common 
Documents with ≥1 supershingle in common => similar 
 
•  Each supershingle for a doc. characterizes the doc 
•  Sort <supershingle, docID> pairs: docs sharing a 

supershingle are similar =>  our first paradigm 
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Pros and Cons of Supershingles 

+ Faster 
-  Problems with small documents – not enough 

shingles 
-  Can’t do containment  

Shingles of superset that are not in subset 
break up sequence of shingle values 
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Variations of shingling 

•  Can define different ways to do sampling 
•  Studies in original paper used modular 

arithmetic 
– sketch formed by taking shingle hash values 

mod some selected m 
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Original experiments (1996)  
by Broder et. al. 

•  30 million HTML and text docs (150GB) from Web crawl 
•  10-word shingles 
•  600 million shingles (3GB) 
•  Sketch using 4% shingles (variation of alg. we’ve seen) 

Looking for clusters of near-duplicate documents 
•  Using threshold t = 50%, found  

3.6 million clusters of 12.3 million docs 
–  2.1 million clusters of identical docs, 5.3 million docs 
–  1.5 million clusters mixture: 

“exact duplicates and similar” 

Comparison SimHash method to 
Sketches of Shingles 

•  Study by Monika Henzinger SIGIR 2006 

•  1.6B unique pages from Google crawler  

•  Randomly sampled pairs found near-duplicates 
by each algorithm 

•  Human judges: correct, incorrect undecided 
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Correct near-duplicate web pages 
Any one of: 
(1) their text differs only by the following: a session id, a 
timestamp, an execution time, a message id, a visitor 
count, a server name, and/or all or part of their URL (which 
is included in the document text),  
(2) the difference is invisible to the visitors of the pages,  
(3) the difference is a combination of the items listed in (1) 
and (2), or  
(4) the pages are entry pages to the same site.  
 

Incorrect near duplicates 
 

•  the main item(s) of the page was (were) different  
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Results  

•  Using supershinges: of 1910 pairs, 
–   0.38 correct, 0.53 incorrect 
–  . 86  and .06 if pages on different sites (152) 

•  Using SimHash: of 1872,  
–  .5 correct, .27 incorrect 
–  .9 and .05 if pages on different sites (479) 
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