
1

1

Finding near-duplicate
documents

2

Duplicate versus near duplicate
documents

•  Duplicate = identical?
•  Near duplicate:

small structural differences
• not just content similarity

•  define “small”
– date change?
– small edits?
– metadata change?
– other?

3

Applications

•  Crawling network - saw last class
•  Indexing
•  Returning query results

– cluster near duplicates; return 1
•  Plagiarism

Different criteria for different applications
4

Framework

•  Algorithm to assign quantitative degree of
similarity between documents

•  Issues
– What is basic token for documents?

•  character
•  word/term

– What is threshold for “near duplicate”?
– What are computational costs?

2

5

Classic document comparison

•  Edit distance
– count deletions, additions, substitutions to

convert Doc1 into Doc2
– each action can have different cost
– applications

•  UNIX “diff”
•  similarity of genetic sequences

•  Edit distance algorithm
– dynamic programming
–  time O(m*n) for strings length m and n

Term-based signature with SimHash
•  represent each doc using vector w of term freq.
•  each term è random f-dim vector t over {-1, 1}

–  f a parameter (Henzinger uses f=64)

•  signature s for a document is f-dim bit vector:
first construct f-dim vector v:

v(k) = Σ tj(k)*w(j)
 terms j

s: s(k) = 1 if vk > 0, else sk = 0
•  distance between docs is number of bits different

– Hamming distance
•  theory shows similar documents, close signatures

6

7

Addressing computation cost

Find duplicates in N docs: general paradigm

1.  Define function f capturing contents of each document
in one number

–  f(doc1)-f(doc2) must reflect similarity of doc1, doc2

 “Hash function”, “signature”, “fingerprint”
2.  Create <f(doci), ID of doci> pairs
3.  Sort the pairs
4.  Recognize duplicate or near-duplicate documents as

having the same f value or f values within a small
threshold

Compare: computing similarity score on pairs of docs 8

Optimistic cost

A general paradigm to find duplicates in N docs:

1.  Compute function f capturing contents of a
document in one number O(|doc|)

2.  Create <f(doci), ID of doci> pairs O(Σi=1...N (|doci|))
3.  Sort the pairs O(N log N)
4.  Recognize duplicate or near-duplicate documents

as having the same f value or f values within a small
threshold O(N)

Compare:
computing similarity score on all pairs of documents O(N2)

3

9

General paradigm: details
1.  Compute function f capturing contents of one document in one

number
2.  Create <f(doci), ID of doci> pairs
3.  Sort the pairs

4.  Recognize duplicate or near-duplicate
documents as having the same f value or f
values within a small threshold

–  recognize exact duplicates:
•  threshold = 0
•  examine documents to verify duplicates

–  recognize near-duplicates
Use small “small threshold”
=> “near duplicate” not transitive

10

“Syntactic clustering”

We will look at this one example:
 Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and

Geoffrey Zweig, Syntactic Clustering of the Web
 Sixth International WWW Conference, 1997.

•  “syntactic similarity” versus semantic
Sequences of words

•  Finding near duplicates
•  Doc = sequence of words

Word = Token
•  Uses sampling
•  Similarity based on shingles
•  Does compare documents

11

Shingles

•  A w-shingle is a contiguous subsequence
of w words

•  The w-shingling of doc D, S(D, w) is the
set of unique w-shingles of D

12

Similarity of docs with shingles

➤ For fixed w, resemblance of docs A and B :
r(A, B) = |S(A) ∩ S(B)| / |S(A) U S(B)|

Jaccard coefficient

•  For fixed w, containment of doc A in doc B :
C(A, B) = |S(A) ∩ S(B)| / |S(A)|

•  For fixed w, resemblance distance btwn docs A and B :
D(A, B) = 1- r(A, B)

Is a metric (triangle inequality)

Note we are now comparing documents!

4

13

Example
A: “a rose is red a rose is white”
4-shingles:

“a rose is red”
“rose is red a”
“is red a rose”
“red a rose is”
“a rose is white”

B: “a rose is white a rose is
red”

4-shingles:
“a rose is white”
“rose is white a”
“is white a rose”
“white a rose is”
“a rose is red” r(A, B) = 0.25

14

Compare
A: “a rose is red a rose is white”
3-shingles:

“a rose is”
“rose is red”
“is red a”
“red a rose”
“rose is white”

B: “a rose is white a rose is
red”

3-shingles:
“a rose is”
“rose is white”
“is white a”
“white a rose”
“rose is red” r(A, B) = 0.43

15

Sample of shingles
Want to estimate r and/or c
Do this by calculating approximation on a sample of

shingles for fixed w

•  1-to-1 map each shingle to integer in fixed, large range R

–  64-bit hash, R=[0, 264-1]
•  Let Π be a random permutation from R to R
•  For any S(D) define:

H(D) = Set of integer hash values corresponding to
shingles in S(D)

Π(D) = Set of permuted values in H(D)
x(Π, D) = smallest integer in Π(D)

16

Sketch of shingles
•  Let Π1, …, Πm be m random permutations R →

R
–  text: m=20

The sketch of doc D for Π1, …, Πm is

ψ(D) = {x(Πi, D) | 1≤ i ≤ m }

doc → set shingles → set integers

 → m sets permuted integers
 → m smallest integers: one per permutation

Sketch is a sampling

5

17

Approximation of resemblance

Theorem:
For random permutation Π:

r(A, B) = P (x(Π, A) = x(Π, B))

Estimate P (x(Π, A) = x(Π, B)) as
| ψ(A) ∩ ψ(B) | / m

recall m is # permutations

18

Example: compare
A: “a rose is red a rose is white”
3-shingles:

1“a rose is”
2“rose is red”
3“is red a”
4“red a rose”
5“rose is white”

B: “a rose is white a rose is
red”

3-shingles:
“a rose is” 1
“rose is white” 5
“is white a” 6
“white a rose” 7
“rose is red” 2 r(A, B) = 0.43

Example mappings

•  R = [0, 10000]
•  Let H(i) = i*1000; 1≤i≤7
•  Let m=5
•  Define a permutation

–  Example
•  Get randval = Math.random()
•  Compute function of randval and H(i) to get Π(i)

•  Do 5 times for 5 permutations

19

ψ(A) = {x(Πi, A) | 1≤ i ≤ m } = {568, 1150, 6119, 6880, 1905}

Π1: Π2: Π3:

Π4: Π5:

20

568
1136
1705
2273
2842
3410
3979

 1150
2301
3452
4602
5753
6904
8054

9223
8447
7671
6895
6119
5343
4567

9376
8752
8128
7504
6880
6256
5633

2976
5952
8929
1905
4881
7858
834

6

ψ(B) = {x(Πi, B) | 1≤ i ≤ m } = {568, 1150, 4567, 5633, 834}

Π1: Π2: Π3:

Π4: Π5:

21

568
1136

222842
3410
3979

 1150
2301
5753
6904
8054

9223
8447
6119
5343
4567

9376
8752
6880
6256
5633

2976
 5952
4881
7858
834

ψ(A) = {x(Πi, A) | 1≤ i ≤ m } = {568, 1150, 6119, 6880, 1905}
ψ(B) = {x(Πi, B) | 1≤ i ≤ m } = {568, 1150, 4567, 5633, 834}

Π1: Π2: Π3:

Π4: Π5:

22

568
1136
1705
2273
2842
3410
3979

 1150
2301
3452
4602
5753
6904
8054

9223
8447
7671
6895
6119
5343
4567

9376
8752
8128
7504
6880
6256
5633

2976
5952
8929
1905
4881
7858
834

Resemblance estimate:
| ψ(A) ∩ ψ(B) | / m
= 2/5 = .4

Actual resemblance
 = 3/7= .43

23

Algorithm used (text’s version)
1.  Calculate sketch ψ(Di) for every doc Di

2.  Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection:

i.  Produce list of <shingle value, docID> pairs for all
shingle values x(Πk, Di) in the sketch for each doc.

ii.  Sort the list by shingle value
iii.  Produce all triples <ID(Di), ID(Dj), cti,j> for which cti,j>0

   This not linear-time for the list of docs for
one shingle value

3.  Recognize duplicate, near-duplicate documents:
resemblance cti,j/m above a large threshold

24

Algorithm cost
1.  Calculate sketch ψ(Di) for every Di O(Σim|Di|)

2.  Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection:

i.  Produce list of <shingle value, docID> pairs for all
shingle values x(Πk, Di) in the sketch for each doc.

ii.  Sort the list by shingle value
iii.  Produce all triples <ID(Di), ID(Dj), cti,j> for which cti,j>0

   This not linear-time for the list of docs for
one shingle value

3.  Recognize duplicate, near-duplicate documents:
resemblance cti,j/m above a large threshold

7

25

Algorithm cost
1.  Calculate sketch ψ(Di) for every Di O(Σim|Di|)

2.  Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection:

i.  Produce list of <shingle value, docID> pairs for all
shingle values x(Πk, Di) in the sketch for each doc.

ii.  Sort the list by shingle value O(mN log (mN))
iii.  Produce all triples <ID(Di), ID(Dj), cti,j> for which cti,j>0

   This not linear-time for the list of docs for one
shingle value

3.  Recognize duplicate, near-duplicate documents:
resemblance cti,j/m above a large threshold

26

Algorithm cost
1.  Calculate sketch ψ(Di) for every Di O(Σim|Di|)

2.  Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection:

i.  Produce list of <shingle value, docID> pairs for all
shingle values x(Πk, Di) in the sketch for each doc.

ii.  Sort the list by shingle value O(mN log (mN))
iii.  Produce all triples <ID(Di), ID(Dj), cti,j> for which cti,j>0

   This not linear-time for the list of docs for one
shingle value O(mN2)

3. Recognize duplicate, near-duplicate documents:
resemblance cti,j/m above a large threshold

27

Algorithm cost
1.  Calculate sketch ψ(Di) for every Di O(Σim|Di|)

2.  Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection:

i.  Produce list of <shingle value, docID> pairs for all
shingle values x(Πk, Di) in the sketch for each doc.

ii.  Sort the list by shingle value O(mN log (mN))
iii.  Produce all triples <ID(Di), ID(Dj), cti,j> for which cti,j>0

   This not linear-time for the list of docs for one
shingle value O(mN2)

3. Recognize duplicate, near-duplicate documents:
resemblance cti,j/m above a large threshold O(N2)

28

Revisit the original paradigm

A general paradigm to find duplicates in N docs:

1.  Compute function f capturing contents of each
document in one number O(|doc|)

2.  Create <f(doci), ID of doci> pairs O(Σi=1...N (|doci|))
3.  Sort the pairs O(N log N)
4.  Recognize duplicate or near-duplicate documents

as having the same f value or f values within a small
threshold O(N)

Compare: computing a similarity score on pairs of
documents

8

29

Syntactic Clustering Paradigm

•  Does compare docs, so not same as paradigm
we started with, but uses ideas

•  Contents of doc captured by sketch – a set of
shingle values

•  Similarity of docs scored by count of common
shingle values for docs

•  Don’t look at all doc pairs, look at all doc pairs
that share a shingle value

•  Textbook clusters by similarity threshold
30

More efficient : supershingles

“meta-sketch”
1.  Sort shingle values of a sketch
2.  Compute the shingling of the sequence of shingle

values
•  Each original shingle value now a token
•  Gives “supershingles”

3.  “meta-sketch” = set of supershingles
One supershingle in common =>
 sequences of shingles in common
Documents with ≥1 supershingle in common => similar

•  Each supershingle for a doc. characterizes the doc
•  Sort <supershingle, docID> pairs: docs sharing a

supershingle are similar => our first paradigm

31

Pros and Cons of Supershingles

+ Faster
-  Problems with small documents – not enough

shingles
-  Can’t do containment

Shingles of superset that are not in subset
break up sequence of shingle values

32

Variations of shingling

•  Can define different ways to do sampling
•  Studies in original paper used modular

arithmetic
– sketch formed by taking shingle hash values

mod some selected m

9

33

Original experiments (1996)
by Broder et. al.

•  30 million HTML and text docs (150GB) from Web crawl
•  10-word shingles
•  600 million shingles (3GB)
•  Sketch using 4% shingles (variation of alg. we’ve seen)

Looking for clusters of near-duplicate documents
•  Using threshold t = 50%, found

3.6 million clusters of 12.3 million docs
–  2.1 million clusters of identical docs, 5.3 million docs
–  1.5 million clusters mixture:

“exact duplicates and similar”

Comparison SimHash method to
Sketches of Shingles

•  Study by Monika Henzinger SIGIR 2006

•  1.6B unique pages from Google crawler

•  Randomly sampled pairs found near-duplicates
by each algorithm

•  Human judges: correct, incorrect undecided

34

Correct near-duplicate web pages
Any one of:
(1) their text differs only by the following: a session id, a
timestamp, an execution time, a message id, a visitor
count, a server name, and/or all or part of their URL (which
is included in the document text),
(2) the difference is invisible to the visitors of the pages,
(3) the difference is a combination of the items listed in (1)
and (2), or
(4) the pages are entry pages to the same site.

Incorrect near duplicates

•  the main item(s) of the page was (were) different

35

Results

•  Using supershinges: of 1910 pairs,
–  0.38 correct, 0.53 incorrect
–  . 86 and .06 if pages on different sites (152)

•  Using SimHash: of 1872,
–  .5 correct, .27 incorrect
–  .9 and .05 if pages on different sites (479)

36

