Finding near-duplicate documents

Duplicate versus near duplicate documents

- Duplicate = identical?
- Near duplicate:
small structural differences
- not just content similarity
- define "small"
- date change?
- small edits?
- metadata change?
- other?

Applications

- Crawling network - saw last class
- Indexing
- Returning query results
- cluster near duplicates; return 1
- Plagiarism

Different criteria for different applications

Framework

- Algorithm to assign quantitative degree of similarity between documents
- Issues
- What is basic token for documents?
- character
- word/term
- What is threshold for "near duplicate"?
- What are computational costs?

Classic document comparison

- Edit distance
- count deletions, additions, substitutions to convert Doc ${ }_{1}$ into Doc_{2}
- each action can have different cost
- applications
- UNIX "diff"
- similarity of genetic sequences
- Edit distance algorithm
- dynamic programming
- time $O\left(m^{*} n\right)$ for strings length m and n

Term-based signature with SimHash

- represent each doc using vector \boldsymbol{w} of term freq.
- each term \rightarrow random f-dim vector \boldsymbol{t} over $\{-1,1\}$ - f a parameter (Henzinger uses $f=64$)
- signature \boldsymbol{s} for a document is f-dim bit vector: first construct f-dim vector \boldsymbol{v} :

$$
\begin{aligned}
& \boldsymbol{v}(\mathrm{k})=\underset{\text { terms } \mathrm{j}}{\sum_{\mathrm{j}}} \boldsymbol{\boldsymbol { t } ^ { \prime }}(\mathrm{k})^{*} \boldsymbol{w}(\mathrm{j}) \\
& \boldsymbol{s}: \boldsymbol{s}(\mathrm{k})=1 \text { if } \boldsymbol{v}_{\mathrm{k}}>0, \text { else } \boldsymbol{s}_{\mathrm{k}}=0
\end{aligned}
$$

- distance between docs is number of bits different - Hamming distance
- theory shows similar documents, close signatures ${ }^{6}$

Addressing computation cost

Find duplicates in N docs: general paradigm

1. Define function f capturing contents of each document in one number

- $f\left(\mathrm{doc}_{1}\right)-f\left(\mathrm{doc}_{2}\right)$ must reflect similarity of doc_{1}, doc $_{2}$
"Hash function", "signature", "fingerprint"

2. Create $<f\left(\right.$ doc $\left._{i}\right)$, ID of doc \gg pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold

Compare: computing similarity score on pairs of docs

Optimistic cost

A general paradigm to find duplicates in N docs:

1. Compute function f capturing contents of a document in one number $\mathrm{O}(|\mathrm{doc}|)$
2. Create $<f\left(\right.$ doc $\left._{\mathrm{i}}\right)$, ID of doc $>$ pairs $\mathrm{O}\left(\Sigma_{\mathrm{i}=1 \ldots \mathrm{~N}}\left(\left|\mathrm{doc}_{\mathrm{i}}\right|\right)\right)$
3. Sort the pairs $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold O(N)

Compare:
computing similarity score on all pairs of documents $\mathrm{O}\left(\mathrm{N}^{2}\right)$

General paradigm: details

1. Compute function f capturing contents of one document in one number
2. Create $<f\left(\right.$ doc $\left._{i}\right)$, ID of doc $>$ pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold

- recognize exact duplicates:
- threshold = 0
- examine documents to verify duplicates
- recognize near-duplicates

Use small "small threshold"
=> "near duplicate" not transitive

"Syntactic clustering"

We will look at this one example:
Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig, Syntactic Clustering of the Web Sixth International WWW Conference, 1997.

- "syntactic similarity" versus semantic Sequences of words
- Finding near duplicates
- Doc = sequence of words

Word = Token

- Uses sampling
- Similarity based on shingles
- Does compare documents

Similarity of docs with shingles

- For fixed \boldsymbol{w}, resemblance of docs A and B :

```
r(A,B)=|S(A)\capS(B)| / |S(A) U S(B)|
```

 Jaccard coefficient
 - For fixed \boldsymbol{w}, containment of doc A in doc B :
$C(A, B)=|S(A) \cap S(B)| \quad / \quad|S(A)|$
- For fixed \boldsymbol{w}, resemblance distance btwn docs A and B :
$D(A, B)=1-r(A, B)$
Is a metric (triangle inequality)
Note we are now comparing documents!

Example

A: "a rose is red a rose is white"
4-shingles:

"a rose is red" | B: "a rose is white a rose is |
| :--- |
| "rose is red a" |
| "is red a rose" |
| "red a rose is" |
| "a rose is white" |
| 4-shingles: |
| "a rose is white" |
| "rose is white a" |
| "is white a rose" |
| "white a rose is" |
| "a rose is red" |

Compare

A: "a rose is red a rose is white"
3-shingles:

Sketch of shingles

- Let Π_{1}, \ldots, Π_{m} be m random permutations $R \rightarrow$ R
- text: m=20

The sketch of doc D for Π_{1}, \ldots, Π_{m} is

$$
\psi(\mathrm{D})=\left\{x\left(\Pi_{\mathrm{i}}, \mathrm{D}\right) \mid 1 \leq \mathrm{i} \leq \mathrm{m}\right\}
$$

doc \rightarrow set shingles \rightarrow set integers
$\rightarrow m$ sets permuted integers
\rightarrow m smallest integers: one per permutation
Sketch is a sampling

Approximation of resemblance

Theorem:
For random permutation Π :

$$
\mathrm{r}(\mathrm{~A}, \mathrm{~B})=\mathrm{P}(x(\Pi, \mathrm{~A})=x(\Pi, \mathrm{~B}))
$$

Estimate $\mathrm{P}(x(\Pi, \mathrm{~A})=x(\Pi, \mathrm{~B}))$ as $|\psi(A) \cap \psi(B)| / m$
recall m is \# permutations

Example mappings

- $R=[0,10000]$
- Let $\mathrm{H}(\mathrm{i})=\mathrm{i}^{*} 1000 ; \quad 1 \leq \mathrm{i} \leq 7$
- Let $\mathrm{m}=5$
- Define a permutation
- Example
- Get randval = Math.random()
- Compute function of randval and $H(i)$ to get $\Pi(i)$
- Do 5 times for 5 permutations

Example: compare

A: "a rose is red a rose is white"
3-shingles:

18

$\psi(B)=\left\{x\left(\Pi_{i}, B\right) \mid 1 \leq i \leq m\right\}=\{568,1150,4567,5633,834\}$					
$\Pi_{1}:$	$\underline{568}$	$\Pi_{2}:$	1150	$\Pi_{3}:$	9223
	2842		5753		6119
	3410		6904		5343
	3979		8054		4567
Π_{4} :	9376	Π_{5} :	2976		
	8752		5952		
	6880		4881		
	6256		7858		
	5633		834		
21					

$\psi(A)=\left\{x\left(\Pi_{i}, A\right) \mid 1 \leq i \leq m\right\}=\{568,1150,6119,6880,1905\}$ $\psi(B)=\left\{x\left(\Pi_{i}, B\right) \mid 1 \leq i \leq m\right\}=\{568,1150,4567,5633,834\}$

Π_{1} :	$\begin{array}{r} \frac{568}{1136} \\ 1705 \\ 2273 \\ 2842 \\ 3410 \\ 3979 \end{array}$	Π_{2} :	1150 2301 3452 4602 5753 6904 8054	Π_{3}	$\begin{aligned} & 9223 \\ & 8447 \\ & 7671 \\ & 6895 \\ & 6119 \\ & \hline 5343 \\ & 4567 \\ & \hline \end{aligned}$
Π_{4} :	9376 8752 8128 7504 6880 6256 5633	Π_{5} :	$\begin{array}{r} 2976 \\ 5952 \\ 8929 \\ 1905 \\ \hline 4881 \\ 7858 \\ 834 \\ \hline \end{array}$	Rese $\stackrel{1}{=}$ Actua $=$	ance estimate: $\cap \psi(\mathrm{B}) \mid / \mathrm{m}$ $=.4$ semblance $=.43$

Algorithm used (text's version)

1. Calculate sketch $\psi\left(D_{i}\right)$ for every doc D_{i}
2. Calculate $\left|\psi\left(\mathrm{D}_{\mathrm{i}}\right) \cap \psi\left(\mathrm{D}_{\mathrm{j}}\right)\right|=\mathrm{ct}_{\mathrm{tij}_{\mathrm{j}}}$ for each nonempty intersection:
i. Produce list of <shingle value, docID> pairs for all shingle values $x\left(\Pi_{k}, D_{j}\right)$ in the sketch for each doc.
ii. Sort the list by shingle value
iii. Produce all triples $<I D\left(D_{\mathrm{i}}\right), I D\left(D_{\mathrm{i}}\right)$, $\mathrm{ct}_{\mathrm{i}, \mathrm{j}}>$ for which $\mathrm{ct}_{\mathrm{i}, \mathrm{j}}>0$

This not linear-time for the list of docs for one shingle value
3. Recognize duplicate, near-duplicate documents: resemblance $\mathrm{ct}_{\mathrm{i}, \mathrm{j}} / \mathrm{m}$ above a large threshold

Algorithm cost

1. Calculate sketch $\psi\left(D_{i}\right)$ for every $D_{i} O\left(\Sigma_{i} m\left|D_{i}\right|\right)$
2. Calculate $\left|\psi\left(D_{i}\right) \cap \psi\left(D_{j}\right)\right|=c t_{i j}$ for each nonempty intersection:
i. Produce list of <shingle value, docID> pairs for all shingle values $x\left(\Pi_{k}, D_{i}\right)$ in the sketch for each doc.
ii. Sort the list by shingle value
iii. Produce all triples $<I D\left(D_{\mathrm{i}}\right), \operatorname{ID}\left(\mathrm{D}_{\mathrm{i}}\right)$, ct $\mathrm{c}_{\mathrm{i}, \mathrm{j}}>$ for which $\mathrm{ct} \mathrm{t}_{\mathrm{i}, \mathrm{j}}>0$ This not linear-time for the list of docs for one shingle value
3. Recognize duplicate, near-duplicate documents: resemblance $\mathrm{ct}_{\mathrm{i}, \mathrm{j}} / \mathrm{m}$ above a large threshold

Algorithm cost

1. Calculate sketch $\psi\left(D_{i}\right)$ for every $D_{i} O\left(\Sigma_{i} m\left|D_{i}\right|\right)$
2. Calculate $\left|\psi\left(D_{i}\right) \cap \psi\left(D_{j}\right)\right|=c t_{i j}$ for each nonempty intersection:
i. Produce list of <shingle value, docID> pairs for all shingle values $x\left(\Pi_{k}, D_{i}\right)$ in the sketch for each doc
ii. Sort the list by shingle value $\quad \mathrm{O}(\mathrm{mN} \log (\mathrm{mN}))$
iii. Produce all triples $<I D\left(D_{i}\right), I D\left(D_{j}\right), c t_{i, j}>$ for which $c t_{i, j}>0$

This not linear-time for the list of docs for one
shingle value
3. Recognize duplicate, near-duplicate documents: resemblance $\mathrm{ct}_{\mathrm{i}, \mathrm{j}} / \mathrm{m}$ above a large threshold

Algorithm cost

1. Calculate sketch $\psi\left(D_{i}\right)$ for every $D_{i} O\left(\Sigma_{i} m\left|D_{i}\right|\right)$
2. Calculate $\left|\psi\left(\mathrm{D}_{\mathrm{i}}\right) \cap \psi\left(\mathrm{D}_{\mathrm{j}}\right)\right|=\mathrm{ct}_{\mathrm{ij}}$ for each nonempty intersection:
i. Produce list of <shingle value, docID> pairs for all shingle values $x\left(\Pi_{k}, D_{i}\right)$ in the sketch for each doc.
ii. Sort the list by shingle value $\quad \mathrm{O}(\mathrm{mN} \log (\mathrm{mN}))$
iii. Produce all triples $<\mid \mathrm{D}\left(\mathrm{D}_{\mathrm{i}}\right), \mathrm{ID}\left(\mathrm{D}_{\mathrm{i}}\right), \mathrm{c}_{\mathrm{i}, \mathrm{j}}>$ for which $\mathrm{ct}_{\mathrm{t}, \mathrm{j}}>0$

This not linear-time for the list of docs for one shingle value $\mathrm{O}\left(\mathrm{mN}^{2}\right)$
3. Recognize duplicate, near-duplicate documents: resemblance $\mathrm{ct}_{\mathrm{i},} / \mathrm{m}$ above a large threshold $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Algorithm cost

1. Calculate sketch $\psi\left(\mathrm{D}_{\mathrm{i}}\right)$ for every $\mathrm{D}_{\mathrm{i}} \mathrm{O}\left(\Sigma_{\mathrm{i}} \mathrm{m}\left|\mathrm{D}_{\mathrm{i}}\right|\right)$
2. Calculate $\left|\psi\left(\mathrm{D}_{\mathrm{i}}\right) \cap \psi\left(\mathrm{D}_{\mathrm{j}}\right)\right|=\mathrm{ct} \mathrm{t}_{\mathrm{ij}}$ for each nonempty intersection:
i. Produce list of <shingle value, docID> pairs for all shingle values $x\left(\Pi_{k}, D_{i}\right)$ in the sketch for each doc.
ii. Sort the list by shingle value $\quad O(m N \log (m N))$
iii. Produce all triples $<I D\left(D_{i}\right), I D\left(D_{j}\right), c t_{i, j}>$ for which $c t_{i, j}>0$ This not linear-time for the list of docs for one shingle value $\mathrm{O}\left(\mathrm{mN}^{2}\right)$
3. Recognize duplicate, near-duplicate documents: resemblance $\mathrm{ct}_{\mathrm{i}, \mathrm{j}} / \mathrm{m}$ above a large threshold

Revisit the original paradigm

A general paradigm to find duplicates in N docs:

1. Compute function f capturing contents of each document in one number $\mathrm{O}(|\mathrm{doc}|)$
2. Create $\left\langle f\left(\right.\right.$ doc $\left._{\mathrm{i}}\right)$, ID of doc \gg pairs $O\left(\sum_{\mathrm{i}=1 \ldots \mathrm{~N}}\left(\left|\mathrm{doc}_{\mathrm{i}}\right|\right)\right)$
3. Sort the pairs $O(N \log N)$
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold $\mathrm{O}(\mathrm{N})$

Compare: computing a similarity score on pairs of documents

Syntactic Clustering Paradigm

- Does compare docs, so not same as paradigm we started with, but uses ideas
- Contents of doc captured by sketch - a set of shingle values
- Similarity of docs scored by count of common shingle values for docs
- Don't look at all doc pairs, look at all doc pairs that share a shingle value
- Textbook clusters by similarity threshold

Pros and Cons of Supershingles

+ Faster
- Problems with small documents - not enough shingles
- Can' t do containment

Shingles of superset that are not in subset break up sequence of shingle values

- Each supershingle for a doc. characterizes the doc
- Sort <supershingle, docID> pairs: docs sharing a
supershingle are similar => our first paradigm

More efficient : supershingles

"meta-sketch"

1. Sort shingle values of a sketch
2. Compute the shingling of the sequence of shingle values

- Each original shingle value now a token
- Gives "supershingles"

3. "meta-sketch" = set of supershingles

One supershingle in common =>
sequences of shingles in common
Documents with ≥ 1 supershingle in common => similar

Variations of shingling

- Can define different ways to do sampling
- Studies in original paper used modular arithmetic
- sketch formed by taking shingle hash values mod some selected m

Original experiments (1996)

by Broder et. al.

- 30 million HTML and text docs (150 GB) from Web crawl
- 10-word shingles
- 600 million shingles (3GB)
- Sketch using 4\% shingles (variation of alg. we've seen)

Looking for clusters of near-duplicate documents

- Using threshold $t=50 \%$, found
3.6 million clusters of 12.3 million docs
- 2.1 million clusters of identical docs, 5.3 million docs
- 1.5 million clusters mixture:
"exact duplicates and similar"

Comparison SimHash method to Sketches of Shingles

- Study by Monika Henzinger SIGIR 2006
- 1.6B unique pages from Google crawler
- Randomly sampled pairs found near-duplicates by each algorithm
- Human judges: correct, incorrect undecided

Correct near-duplicate web pages

Any one of:
(1) their text differs only by the following: a session id, a timestamp, an execution time, a message id, a visitor count, a server name, and/or all or part of their URL (which is included in the document text),
(2) the difference is invisible to the visitors of the pages,
(3) the difference is a combination of the items listed in (1)
and (2), or
(4) the pages are entry pages to the same site.

Incorrect near duplicates

- the main item(s) of the page was (were) different

Results

- Using supershinges: of 1910 pairs,
- 0.38 correct, 0.53 incorrect
-.86 and .06 if pages on different sites (152)
- Using SimHash: of 1872,
- . 5 correct, .27 incorrect
- . 9 and .05 if pages on different sites (479)

