The Front End:
1. assumes the presence of an infinite number of registers to hold temporary variables.
2. introduces inefficiencies in the source to IR translation.
3. does a direct translation of programmer’s code.
4. does not create pseudo-assembly tuned to the target architecture.
 - Not scheduled for machines with non-unit latency.
 - Not scheduled for wide-issue machines.

The Back End:
1. Maps infinite number of virtual registers to finite number of real registers → register allocation
2. Removes inefficiencies introduced by front-end → optimizer
3. Removes inefficiencies introduced by programmer → optimizer
4. Adjusts pseudo-assembly composition and order to match target machine → scheduler

Research and development in back end is growing rapidly.
- EPIC Architectures
- Binary re-optimization
- Runtime optimization
- Optimizations requiring additional hardware support
for i := 0 to 10
 do a[i] = x;
 ADDI r1 = r0 + 0

LOOP:
 LOAD r2 = M[FP + a]
 ADDI r3 = r0 + 4
 MUL r4 = r3 * r1
 ADD r5 = r2 + r4
 LOAD r6 = M[FP + x]
 STORE M[r5] = r6
 ADDI r1 = r1 + 1
 BRANCH r1 <= 10, LOOP

Loop invariant code removal...

Register Allocation

for i := 0 to 10
 do a[i] = x;
 ADDI r1 = r0 + 0
 LOAD r2 = M[FP + a]
 ADDI r3 = r0 + 4
 LOAD r6 = M[FP + x]

LOOP:
 MUL r4 = r3 * r1
 ADD r5 = r2 + r4
 STORE M[r5] = r6
 ADDI r1 = r1 + 1
 BRANCH r1 <= 10, LOOP

Uses 6 virtual registers, only have 5 real registers...

Scheduling

1 ADDI r1 = r0 + 0
2 LOAD r2 = M[FP + A]
3 ADDI r3 = r0 + 4
4 LOAD r4 = M[FP + X]

LOOP:
1 MUL r5 = r3 * r1
2 ADD r5 = r2 + r5
3 STORE M[r5] = r4
4 ADDI r1 = r1 + 1
5 BRANCH r1 <= 10, LOOP

1 ADDI r1 = r0 + 0
2 LOAD r2 = M[FP + A]
3 ADDI r3 = r0 + 4
4 LOAD r4 = M[FP + X]

LOOP:
1 MUL r5 = r3 * r1
2 ADDI r1 = r1 + 1
3 ADD r5 = r2 + r5
4 STORE M[r5] = r4
5 BRANCH r1 <= 10, LOOP

Multiply instruction takes 2 cycles...
Analysis

- Control Flow Analysis determines the how instructions are fetched during execution.
- Control Flow Analysis precedes dataflow analysis.
- Dataflow analysis determines how data flows among instructions.
- Dataflow analysis precedes optimization, register allocation, and scheduling.

Control Flow Analysis

Control Flow Analysis determines how instructions are fetched during execution.
- Control Flow Graph - graph of instructions with directed edge \(I_i \rightarrow I_j \) iff \(I_j \) can be executed immediately after \(I_i \).

Control Flow Analysis Example

```
r1 = 0

LOOP:
    r1 = r1 + 1
    r2 = r1 & 1
    BRANCH r2 == 0, ODD
    r3 = r3 + 1
    JUMP NEXT

ODD:
    r4 = r4 + 1

NEXT:
    BRANCH r1 <= 10, LOOP
```
Basic Blocks

- *Basic Block* - run of code with single entry and exit.
- Control flow graph of basic blocks more convenient.
- Determine by the following:
 1. Find *leaders*:
 (a) First statement
 (b) Targets of conditional and unconditional branches
 (c) Instructions that follow branches
 2. Basic blocks are leader up to, but not including next leader.

Basic Block Example

```
   r1 = 0
   LOOP:
     r1 = r1 + 1
     r2 = r1 & 1
     BRANCH r2 == 0, ODD
     r3 = r3 + 1
     JUMP NEXT
   ODD:
     r4 = r4 + 1
   NEXT:
     BRANCH r1 <= 10, LOOP
```

Domination Motivation

Constant Propagation:

```
  r1 = 4
  r2 = r1 + 5
  r2 - r1 + 5
  r1 = 4
  r2 - 9
```

```
  r2 - r1 + 5
  r2 - 9
```
• Assume every Control Flow Graph (CFG) has \textit{start} node \(s_0\) with no predecessors.
• Node \(d\) dominates node \(n\) if every path of directed edges from \(s_0\) to \(n\) must go through \(d\).
• Every node dominates itself.
• Consider:

\[
\begin{array}{c}
\text{\(d\)} \\
\text{........}
\end{array}
\begin{array}{c}
p_1 \quad p_2 \\
p_3 \quad \ldots \quad p_k \\
\text{\(n\)}
\end{array}
\]

• If \(d\) dominates each of the \(p_i\), then \(d\) dominates \(n\).
• If \(d\) dominates \(n\), then \(d\) dominates each of the \(p_i\).

\section*{Dominator Analysis}

• If \(d\) dominates each of the \(p_i\), then \(d\) dominates \(n\).
• If \(d\) dominates \(n\), then \(d\) dominates each of the \(p_i\).
• \(\text{Dom}\{n\} = \text{set of nodes that dominate node } n\).
• \(N = \text{set of all nodes}\).
• Computation:
 1. \(\text{Dom}\{s_0\} = \{s_0\}\).
 2. \textbf{for } n \in N \setminus \{s_0\} \textbf{ do } \text{Dom}\{n\} = N
 3. \textbf{while } (\text{changes to any } \text{Dom}\{n\} \text{ occur}) \textbf{ do }
 4. \textbf{for } n \in N \setminus \{s_0\} \textbf{ do }
 5. \text{Dom}\{n\} = \{n\} \cup \bigcap_{p \in \text{pred}\{n\}} \text{Dom}\{p\}.

\section*{Dominator Analysis Example}

\begin{table}[h]
\begin{tabular}{|c|c|c|}
\hline
Node & \textit{Dom}\{n\} & \textit{Dom}\{n\} & \textit{IDom}\{n\} \\
\hline
1 & \{1\} & \{1\} & \{\} \\
2 & 1-12 & 1-12 & \{\} \\
3 & 1-12 & 1-12 & \{\} \\
4 & 1-12 & 1-12 & \{\} \\
5 & 1-12 & 1-12 & \{\} \\
6 & 1-12 & 1-12 & \{\} \\
7 & 1-12 & 1-12 & \{\} \\
8 & 1-12 & 1-12 & \{\} \\
9 & 1-12 & 1-12 & \{\} \\
10 & 1-12 & 1-12 & \{\} \\
11 & 1-12 & 1-12 & \{\} \\
12 & 1-12 & 1-12 & \{\} \\
\hline
\end{tabular}
\end{table}
Immediate Dominator/Dominator Tree

- Immediate dominator used in constructing dominator tree.
- Dominator Tree:
 - efficient representation of dominator information
 - used for other types of analysis (e.g. control dependence)
- s_0 is root of dominator tree.
- Each node d dominates only its descendants in tree.
- Every node n ($n \neq s_0$) has exactly one immediate dominator $IDom[n]$.
- $IDom[n] \neq n$
- $IDom[n]$ dominates n
- $IDom[n]$ does not dominate any other dominator of n.
- Last dominator of n on any path from s_0 to n is $IDom[n]$.

Immediate Dominator Example

<table>
<thead>
<tr>
<th>Node</th>
<th>Dom[n]</th>
<th>IDom[n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,2,3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,2,4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1,2,5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1,2,4,6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1,2,7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1,2,5,8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1,2,5,8,9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1,2,5,8,9,10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1,2,7,11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1,2,12</td>
<td></td>
</tr>
</tbody>
</table>

Post Dominator

- Assume every Control Flow Graph (CFG) has exit node x with no successors.
- Node p post-dominates node n if every path of directed edges from n to x must go through p.
- Every node post-dominates itself.
- Derivation of post-dominator and immediate post-dominator analysis analogous to dominator and immediate dominator analysis.
- Post-dominators will be useful in computing control dependence.
- Control dependence will be useful in many future optimizations.
Loop Optimization

- Large fraction of execution time is spent in loops.
- Effective loop optimization is extremely important.
- First step in loop optimization → find the loops.

A loop is a set of CFG nodes S such that:

1. there exists a header node h in S that dominates all nodes in S.
 - there exists a path of directed edges from h to any node in S.
 - h is the only node in S with predecessors not in S.
2. from any node in S, there exists a path of directed edges to h.

- A loop is a single entry, multiple exit region.

Examples of Loops

Back Edges

- Back-edge - flow graph edge from node n to node h such that h dominates n
- Each back-edge has a corresponding natural loop.
Natural Loops

- Natural loop of back-edge \((n, h)\):
 - has a loop header \(h\).
 - set of nodes \(X\) such that \(h\) dominates \(x \in X\) and there is a path from \(x\) to \(n\) not containing \(h\).
- A node \(h\) may be header of more than one natural loop.
- Natural loops may be nested.

Loop Optimization

- Compiler should optimize inner loops first.
 - Programs *typically* spend most time in inner loops.
 - Optimizations may be more effective → loop invariant code removal.
- Convenient to merge natural loops with same header.
- These merged loops are not natural loops.
- Not all cycles in CFG are loops of any kind (more later).

Loop Optimization

Loop invariant code motion

- An instruction is loop invariant if it computes the same value in each iteration.
- Invariant code may be hoisted outside the loop.

```assembly
ADDI r1 = r0 + 0
LOAD r2 = M[FP + a]
ADDI r3 = r0 + 4
LOAD r6 = M[FP + x]

LOOP:
  MUL r4 = r3 * r1
  ADD r5 = r2 + r4
  STORE M[r5] = r6
  ADDI r1 = r1 + 1
  BRANCH r1 <= 10, LOOP
```
Loop Optimization

- **Induction variable analysis and elimination** - i is an induction variable if only definitions of i within loop increment/decrement i by loop-invariant value.
- **Strength reduction** - replace expensive instructions (like multiply) with cheaper ones (like add).

```
ADDI  r1 = r0 + 0
LOAD  r2 = M[FP + a]
ADDI  r3 = r0 + 4
LOAD  r6 = M[FP + x]
```

```
LOOP:
  MUL  r4 = r3 * r1
  ADD  r5 = r2 + r4
  STORE M[r5] = r6
  ADDI  r1 = r1 + 1
  BRANCH r1 <= 10, LOOP
```

Non-Loop Cycles

- Loops are instances of *reducible* flow graphs.
 - Each cycle of nodes has a unique header.
 - During reduction, entire loop becomes a single node.
- Non-Loops are instances of *irreducible* flow graphs.
 - Analysis and optimization is more efficient on reducible flow graphs.
 - Irreducible flow graphs occur rarely in practice.
 - Use of structured constructs (e.g. if-then, if-then-else, while, repeat, for) leads to reducible flow graphs.
 - Use of goto's may lead to irreducible flow graphs.
 - Irreducible flow graphs can be made reducible by *node-splitting*.
Node Splitting