Abstract Syntax

Can write entire compiler in ML-YACC specification.
- Semantic actions would perform type checking and translation to assembly.
- Disadvantages:
 1. File becomes too large, difficult to manage.
 2. Program must be processed in order in which it is parsed. Impossible to do global/inter-procedural optimization.
Alternative: Separate parsing from remaining compiler phases.

Parse Trees

- We have been looking at concrete parse trees.
 - Each internal node labeled with non-terminal.
 - Children labeled with symbols in RHS of production.
- Concrete parse trees inconvenient to use! Tree is cluttered with tokens containing no additional information.
 - Punctuation needed to specify structure when writing code, but
 - Tree structure itself cleanly describes program structure.
Parse Tree Example

\[
\begin{align*}
P & \rightarrow (S) \\
S & \rightarrow S ; S \\
S & \rightarrow ID := E
\end{align*}
\]

\[
E \rightarrow ID \\
E \rightarrow NUM \\
E \rightarrow E + E \\
E \rightarrow E \ast E \\
E \rightarrow E / E
\]

\[
(\ a \ := \ 4 \ ; \ b \ := \ 5 \)
\]

\[
\begin{array}{c}
P \\
(\ S) \\
\rightarrow \\
S \\
ID("a") := E \\
ID("b") := E \\
NUM(4) \\
NUM(4)
\end{array}
\]

Type checker does not need "(" or ")" or ",".

Parse Tree Example

Solution: generate abstract parse tree (abstract syntax tree) - similar to concrete parse tree, except redundant punctuation tokens left out.

Semantic Analysis: Symbol Tables

- Semantic Analysis Phase:
 - Type check AST to make sure each expression has correct type
 - Translate AST into IR trees
- Main data structure used by semantic analysis: symbol table
 - Contains entries mapping identifiers to their bindings (e.g. type)
 - As new type, variable, function declarations encountered, symbol table augmented with entries mapping identifiers to bindings.
 - When identifier subsequently used, symbol table consulted to find info about identifier.
 - When identifier goes out of scope, entries are removed.
Symbol Table Example

```plaintext
function f(b: int, c: int) =
    (print_int(b+c);
     let
        var j := b
        var a := "x"
    in
        print(a)
        print(j)
    end
    print_int(a)
)
```

σ₀ = {a → int}
σ₁ = {b → int, c → int, a → int}

Symbol Table Implementation

- Imperative Style: (side effects)
 - Global symbol table
 - When beginning-of-scope entered, entries added to table using side-effects. (old table destroyed)
 - When end-of-scope reached, auxiliary info used to remove previous additions. (old table reconstructed)
- Functional Style: (no side effects)
 - When beginning-of-scope entered, new environment created by adding to old one, but old table remains intact.
 - When end-of-scope reached, retrieve old table.

Imperative Symbol Tables

Symbol tables must permit fast lookup of identifiers.

- **Hash Tables** - an array of buckets
- **Bucket** - linked list of entries (each entry maps identifier to binding)

Suppose we wish to lookup entry for id \(i \) in symbol table:
1. Apply hash function to key \(i \) to get array element \(j \in [0, n-1] \).
2. Traverse bucket in table[\(j \)] in order to find binding \(b \).
 (table[x]: all entries whose keys hash to \(x \))
Hash tables not efficient for functional symbol tables. Insert \(a \mapsto \text{string} \Rightarrow \text{copy array, share buckets:} \)

Old Symbol Table Array

| i | a \mapsto \text{int} |

New Symbol Table Array

| i | a \mapsto \text{string} |

Not feasible to copy array each time entry added to table.

Better method: use binary search trees (BSTs).

- Functional additions easy.
- Need “less than” ordering to build tree.
 - Each node contains mapping from identifier (key) to binding.
 - Use string comparison for “less than” ordering.
 - For all nodes \(u \in L \), key\((u) < \text{key}(l) \)
 - For all nodes \(u \in R \), key\((u) \geq \text{key}(l) \)

Functional Symbol Table Example

Lookup:
Insert:

insert z ← i.r.t. create node z, copy all ancestors of z: