
Class Meeting #10 
Exams 1 Debriefing

COS 226 — Spring 2017

Jérémie Lumbroso

lumbroso@cs.princeton.edu

WRITTEN EXAM 1

Stats from WE1

•  Average: 55

•  Easiest question (Q3, people got on average 97% pts)

•  Hardest question (Q9, people got on average 53.4% pts)

Scanning: Pros and Cons

•  Pros

– Fast grading

– Reprocessable grading

– Easier to assign partial credit

– Safety for all!

– Statistics that help improve exams

•  Cons

– UNSTAPLING

– Filling in the bubbles

Filling in a bubble

Question-Level Statistics

•  A lot of statistics inform us on whether questions were:

–  hard,

–  or misunderstood,

–  or poorly designed

Q1. (i) Union-Find

•  Friends: 1st degree; Friendly: any degree.

•  Bad question:

x

friends of x

friendly
with x

y

z

Q5. (ii) Mergesort (1)

•  do you understand the analysis of
mergesort's runtime well enough to be
able to rebuild analysis with a different
runtime for merge?

•  do you understand what run time
measures?

Q5. (ii) Mergesort (2)

•  Partial: ~log N

•  Full: ~N

Q8. Binary Trees (1)

•  do you know to distinguish between binary tree
and BST?

•  do you know what is a tree traversal?

•  do you know what is pre-order, in-order?

•  do you know what is post-order?

Average	success	rate:	60.08%	

Q8. Binary Trees (2)

•  In-order: C D E N P X Y

•  Post-order: D C E P Y X N

•  Starting point is last of post-order: root

N

E

C

D

X

P Y

Q8. Binary Trees (3)

N

E

C

D

X

P Y

N

E

C

D

X

P Y

Q8. Binary Trees (4)

Q10. Hash Functions (1)

•  Class did not do well on hash questions

•  But there are ways to think about these

methodically (either while studying or
during exam)

Q10. Hash Functions (2)

•  Linear probing: need 2x

the space, so array of
references 8 bytes, 2N*8
bytes

•  Separate chaining: list
nodes need a lot of
overhead per reference
(and still containing the
same reference), so
even if table is ~N or
~1/2N then it takes more
space

PROGRAMMING EXAM 1

Some remarks

•  Statistics to come

•  Big criteria was performance

–  submissions comfortable with manipulating

ST.java (great!)

–  submissions that used a temporary array but did

not iterate over it (ok)

–  submissions that used a temporary array and

iterated over it (meh)

–  submissions that used MAX_EXPONENT in a

loop (that is a big performance hit unfortunately)

Big performance hit: MAX_EXP.

ST.size() or ST.max()

Linear allocation/constructor (1)

Linear allocation/constructor (2)

Creating Result Polynomial (1)

private Polynomial() { .. }

// ...

Polynomial p = Polynomial();

p.coefficients = new ST<>();

Creating Result Polynomial (2)

Polynomial p = Polynomial(
 new double[0]);

p.coefficients //<-- brand new

 // ST

Creating Result Polynomial (3)

private Polynomial(ST<> st) {
 coefficients = st;

}

