

The river banks of Ellsworth Kelly's Seine

Bryan Gin-ge Chen Department of Physics and Astronomy

Ellsworth Kelly (1923–)

Drafted in 1943, went to Boston Museum School in 1946.

Spent 1948-1954 in France.

In 1951, worked on capturing the **reflections of light on water** in a grid.

Also began to cut up brushstrokes and arrange them randomly.

Seine **unified** these ideas:

Study for Seine, 1951

Diane Upright, Ellsworth Kelly: Works on Paper. Fort Worth Art Museum, 1987.

Yve-Alain Bois, Jack Cowart, and Alfred Pacquement. <u>Ellsworth Kelly: The Years in France, 1948-1954</u>. Washington, DC: National Gallery of Art, 1992.

Rectangles were placed according to numbers drawn out of a hat!

Yve-Alain Bois, Jack Cowart, and Alfred Pacquement. Ellsworth Kelly: The Years in France, 1948-1954. Washington, DC: National Gallery of Art, 1992.

Each of the first 41 columns contains one more **black** rectangle than the one to its left.

Each of the next 40 following columns contains one more **white** rectangle than the one to its left.

Perhaps it's too restrictive to think of Seine as the particular instance which was painted – let's consider rather the **whole ensemble of possibilities**!

Questions: ① What can art do for physics? ② What can physics do for art?

(1) What can art do for physics?

In 1985, Sapoval, Rosso, and Gouyet introduced a model for **diffusion fronts** now called **gradient percolation**.

Imagine a snapshot of dye molecules in water diffusing away from a vertical source. What does it look like?

In 1985, Sapoval, Rosso, and Gouyet introduced a model for **diffusion fronts** now called **gradient percolation**.

Imagine a snapshot of dye molecules in water diffusing away from a vertical source. What does it look like?

It'll look like Seine!

The **frontier** of any sort of **random propagation** can be modeled by gradient percolation:

A line of ants pouring out of a nest, the edge of a rusted metal, the spread of a disease...

They'll look like Seine, too!

Questions / Answers:

Seine ended up being a model for diffusion fronts! What can physics do for art?

Let's look "deeper" into Seine, and focus on one visual feature that has physical significance.

Let's draw some numbers out of a hat computer!

Let's draw some numbers out of a hat computer!

Why do we always see this sort of picture, with 384±15 clusters?

Let's draw some numbers out of a hat computer!

Why do we always see this sort of picture, with 384±15 clusters?

Let's draw some numbers out of a hat computer!

Why do we always see this sort of picture, with 384±15 clusters?

Let's draw some numbers out of a hat computer!

And never something like this, with three connected clusters?

There are roughly 1.98×10⁶⁶⁵ different possible configurations.

How many times would we have to "win the lottery" in a row to draw one of these?

Key physics fact: Large **random** systems often exhibit **predictable** behavior!

Predictable behavior in random systems?

This is expressed by various **central limit theorems**: -why "everything" is statistically distributed via the **bell curve** -why stock prices look like **Brownian motion**

Predictable behavior in random systems?

This is expressed by various **central limit theorems**: -why "everything" is statistically distributed via the **bell curve** -why stock prices look like **Brownian motion**

http://gammamath.com/sub/RandomWalk.shtml

http://www.databison.com/index.php/stock-chart-with-scroll-and-zoom/

Predictable behavior in random systems?

This is expressed by various **central limit theorems**: -why "everything" is statistically distributed via the **bell curve** -why stock prices look like **Brownian motion**

This principle applies very broadly!

What do these sorts of laws say about what we **see** in Seine / diffusion fronts?

Three biggest clusters:

I'll call the boundaries of the three biggest clusters "shorelines":

(These curves are precisely the **diffusion fronts**!)

These shorelines are **random curves**.

It was **guessed** that they are very, very likely to be wiggles around the columns that are 59.4% white and 59.4% black.

(59.4% is the **critical probability** in ordinary percolation)

These shorelines are **random curves**.

It was **guessed** that they are very, very likely to be wiggles around the columns that are 59.4% white and 59.4% black.

(59.4% is the **critical probability** in ordinary percolation)

These shorelines are **random curves**.

It was **guessed** that they are very, very likely to be wiggles around the columns that are 59.4% white and 59.4% black.

(59.4% is the **critical probability** in ordinary percolation)

Trick Question: Do the shorelines traverse a **wider** or **narrower** region on a **bigger** grid?

Trick Question: Do the shorelines traverse a **wider** or **narrower** region on a **bigger** grid?

100×199

Trick Question: Do the shorelines traverse a **wider** or **narrower** region on a **bigger** grid?

250×499

Trick Question: Do the shorelines traverse a **wider** or **narrower** region on a **bigger** grid?

500×999

Trick Question: Do the shorelines traverse a **wider** or **narrower** region on a **bigger** grid?

5

Trick Question: Do the shorelines traverse a **wider** or **narrower** region on a **bigger** grid?

41×81

The width of these curves is **guessed** to scale as (Width of the grid in squares)^{4/7}.

The shores get wider, but they widen slower than the grid itself does!

Sapoval M Bosso J. E. Gouver. The fractal nature of a diffusion front and the relation to percolation. J. Physique J. ett. 46, 149-156

B. Sapoval, M. Rosso, J. F. Gouyet, The fractal nature of a diffusion front and the relation to percolation, J. Physique Lett. 46, 149-156 (1985).

Proof on the **triangular grid:** Pierre Nolin, Critical exponents of planar gradient percolation, Annals of Probability 36, 1748-1776 (2008).

 $\langle \neg$

I described the set of possibilities of the painting Seine.

It turned out to be gradient percolation, a model of **diffusion fronts**.

The model is **random**, but large random objects are almost deterministic in some ways!

The "shorelines" of Seine are a strange **random curve** with properties that are still not well understood.

6 years **after** Kelly painted Seine, Broadbent and Hammersley wrote a paper introducing **percolation**.

59% open (white) 61% open (white)

Will water flow between left and right?

S. R. Broadbent and J.M. Hammersley, Percolation processes, Math. Proc. Camb. Phil. Soc. 53, 629-641 (1957)

6 years **after** Kelly painted Seine, Broadbent and Hammersley wrote a paper introducing **percolation**.

59% open (white) 61% open (white)

Only if there's a **connected** open cluster from left to right!

S. R. Broadbent and J.M. Hammersley, Percolation processes, Math. Proc. Camb. Phil. Soc. 53, 629-641 (1957)

References

Diane Upright, Ellsworth Kelly: Works on Paper. Fort Worth Art Museum, 1987.

Yve-Alain Bois, Jack Cowart, and Alfred Pacquement. <u>Ellsworth Kelly: The Years in France</u>, <u>1948-1954</u>. Washington, DC: National Gallery of Art, 1992.

S. R. Broadbent and J.M. Hammersley, Percolation processes, Math. Proc. Camb. Phil. Soc. 53, 629-641 (1957)

B. Sapoval, M. Rosso, J. F. Gouyet, The fractal nature of a diffusion front and the relation to percolation, J. Physique Lett. 46, 149-156 (1985).

Pierre Nolin, Critical exponents of planar gradient percolation, Annals of Probability 36, 1748-1776 (2008).