6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
Min-cut problem

Input. An edge-weighted digraph, source vertex s, and target vertex t. Each edge has a positive capacity.
Mincut problem

Def. A \textit{st-cut (cut)} is a partition of the vertices into two disjoint sets, with \(s \) in one set \(A \) and \(t \) in the other set \(B \).

Def. Its \textit{capacity} is the sum of the capacities of the edges from \(A \) to \(B \).

\[
\text{capacity} = 10 + 5 + 15 = 30
\]
Mincut problem

Def. A *st-cut (cut)* is a partition of the vertices into two disjoint sets, with \(s \) in one set \(A \) and \(t \) in the other set \(B \).

Def. Its *capacity* is the sum of the capacities of the edges from \(A \) to \(B \).
Mincut problem

Def. A *st-cut (cut)* is a partition of the vertices into two disjoint sets, with *s* in one set *A* and *t* in the other set *B*.

Def. Its *capacity* is the sum of the capacities of the edges from *A* to *B*.

Minimum st-cut (mincut) problem. Find a cut of minimum capacity.

![Diagram of a network with labeled edges and vertices](image-url)

capacity = 10 + 8 + 10 = 28
Minicut application (1950s)

"Free world" goal. Cut supplies (if cold war turns into real war).

rail network connecting Soviet Union with Eastern European countries (map declassified by Pentagon in 1999)
Potential mincut application (2010s)

Government-in-power’s goal. Cut off communication to set of people.
Maxflow problem

Input. An edge-weighted digraph, source vertex \(s \), and target vertex \(t \).

each edge has a positive capacity
Maxflow problem

Def. An \textit{st-flow (flow)} is an assignment of values to the edges such that:

- Capacity constraint: $0 \leq \text{edge's flow} \leq \text{edge's capacity}$.
- Local equilibrium: inflow = outflow at every vertex (except s and t).
Maxflow problem

Def. An \textit{st-flow (flow)} is an assignment of values to the edges such that:
- Capacity constraint: \(0 \leq \text{edge's flow} \leq \text{edge's capacity} \).
- Local equilibrium: inflow = outflow at every vertex (except \(s \) and \(t \)).

Def. The \textbf{value} of a flow is the inflow at \(t \).

\begin{align*}
\text{value} &= 5 + 10 + 10 = 25
\end{align*}

we assume no edge points to \(s \) or from \(t \)
Maxflow problem

Def. An *st-flow (flow)* is an assignment of values to the edges such that:
- Capacity constraint: $0 \leq$ edge's flow \leq edge's capacity.
- Local equilibrium: inflow = outflow at every vertex (except s and t).

Def. The value of a flow is the inflow at t.

Maximum st-flow (maxflow) problem. Find a flow of maximum value.

\[
\text{value} = 8 + 10 + 10 = 28
\]
Maxflow application (1950s)

Soviet Union goal. Maximize flow of supplies to Eastern Europe.

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)
Potential maxflow application (2010s)

"Free world" goal. Maximize flow of information to specified set of people.
Summary

Input. A weighted digraph, source vertex s, and target vertex t.

Min-cut problem. Find a cut of minimum capacity.

Maxflow problem. Find a flow of maximum value.

Remarkable fact. These two problems are dual!
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
Ford-Fulkerson algorithm

Initialization. Start with 0 flow.
Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

1st augmenting path

![Graph showing the first augmenting path with bottleneck capacity = 10](image)
Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

2nd augmenting path
Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from s to t such that:
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

3rd augmenting path
Idea: increase flow along augmenting paths

Augmenting path. Find an undirected path from \(s \) to \(t \) such that:
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

4th augmenting path

\[
\begin{array}{c}
\text{S} & \xrightarrow{13} & 0 / 4 & \xrightarrow{8} & 5 / 15 & \xrightarrow{10 / 10} & \text{t} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
5 / 5 & \xrightarrow{10 / 10} & 0 / 4 & \xrightarrow{2} & 5 / 15 & \xrightarrow{8} & 10 / 10 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
& & 0 / 4 & \xrightarrow{8} & 5 / 8 & \xrightarrow{8} & 5 / 10 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
& & 0 / 4 & \xrightarrow{3} & 0 / 6 & \xrightarrow{10 / 10} & 25 + 3 = 28 \\
\end{array}
\]
Idea: increase flow along augmenting paths

Termination. All paths from s to t are blocked by either a

- Full forward edge.
- Empty backward edge.

no more augmenting paths
Ford-Fulkerson algorithm

Start with 0 flow.
While there exists an augmenting path:
 - find an augmenting path
 - compute bottleneck capacity
 - increase flow on that path by bottleneck capacity

Questions.
• How to compute a mincut?
• How to find an augmenting path?
• If FF terminates, does it always compute a maxflow?
• Does FF always terminate? If so, after how many augmentations?
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
Relationship between flows and cuts

Def. The net flow across a cut \((A, B)\) is the sum of the flows on its edges from \(A\) to \(B\) minus the sum of the flows on its edges from \(B\) to \(A\).

Flow-value lemma. Let \(f\) be any flow and let \((A, B)\) be any cut. Then, the net flow across \((A, B)\) equals the value of \(f\).

\[
\text{net flow across cut} = 5 + 10 + 10 = 25
\]

value of flow = 25
Relationship between flows and cuts

Def. The net flow across a cut \((A, B)\) is the sum of the flows on its edges from \(A\) to \(B\) minus the sum of the flows on its edges from \(B\) to \(A\).

Flow-value lemma. Let \(f\) be any flow and let \((A, B)\) be any cut. Then, the net flow across \((A, B)\) equals the value of \(f\).

\[
\text{net flow across cut} = 10 + 5 + 10 = 25
\]

value of flow = 25
Relationship between flows and cuts

Def. The net flow across a cut \((A, B)\) is the sum of the flows on its edges from \(A\) to \(B\) minus the sum of the flows on its edges from \(B\) to \(A\).

Flow-value lemma. Let \(f\) be any flow and let \((A, B)\) be any cut. Then, the net flow across \((A, B)\) equals the value of \(f\).

\[
\text{net flow across cut} = (10 + 10 + 5 + 10 + 0 + 0) - (5 + 5 + 0 + 0) = 25
\]
Relationship between flows and cuts

Def. The net flow across a cut \((A, B)\) is the sum of the flows on its edges from \(A\) to \(B\) minus the sum of the flows on its edges from \(B\) to \(A\).

Flow-value lemma. Let \(f\) be any flow and let \((A, B)\) be any cut. Then, the net flow across \((A, B)\) equals the value of \(f\).

Pf. By induction on the size of \(B\).
- Base case: \(B = \{ t \}\).
- Induction step: remains true by local equilibrium when moving any vertex from \(A\) to \(B\).

Corollary. Outflow from \(s = \text{inflow to } t = \text{value of flow.}**)
Relationship between flows and cuts

Weak duality. Let f be any flow and let (A, B) be any cut. Then, the value of the flow \leq the capacity of the cut.

Pf. Value of flow $f = \text{net flow across cut } (A, B) \leq \text{capacity of cut } (A, B)$.

Flow-value lemma

Flow bounded by capacity

value of flow = 27

capacity of cut = 30
Maxflow-mincut theorem

Augmenting path theorem. A flow f is a maxflow iff no augmenting paths.

Maxflow-mincut theorem. Value of the maxflow $= \text{capacity of mincut.}$

Pf. The following three conditions are equivalent for any flow f:

i. There exists a cut whose capacity equals the value of the flow $f.$

ii. f is a maxflow.

iii. There is no augmenting path with respect to $f.$

\[i \Rightarrow ii \]

- Suppose that (A, B) is a cut with capacity equal to the value of $f.$
- Then, the value of any flow $f' \leq \text{capacity of } (A, B) = \text{value of } f.$
- Thus, f is a maxflow. \[\uparrow \] weak duality \[\uparrow \] by assumption
Maxflow-mincut theorem

Augmenting path theorem. A flow f is a maxflow iff no augmenting paths.
Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f:
 i. There exists a cut whose capacity equals the value of the flow f.
 ii. f is a maxflow.
 iii. There is no augmenting path with respect to f.

[ii \Rightarrow iii] We prove contrapositive: \simiii \Rightarrow \simii.
 • Suppose that there is an augmenting path with respect to f.
 • Can improve flow f by sending flow along this path.
 • Thus, f is not a maxflow.
Maxflow-mincut theorem

Augmenting path theorem. A flow f is a maxflow iff no augmenting paths.

Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f:

i. There exists a cut whose capacity equals the value of the flow f.

ii. f is a maxflow.

iii. There is no augmenting path with respect to f.

[iii \Rightarrow i]

Suppose that there is no augmenting path with respect to f.

- Let (A, B) be a cut where A is the set of vertices connected to s by an undirected path with no full forward or empty backward edges.
- By definition, s is in A; since no augmenting path, t is in B.
- Capacity of cut = net flow across cut \longleftrightarrow forward edges full; backward edges empty

 = value of flow f. \longleftrightarrow flow-value lemma
Computing a mincut from a maxflow

To compute mincut \((A, B)\) from maxflow \(f\):

- By augmenting path theorem, no augmenting paths with respect to \(f\).
- Compute \(A = \) set of vertices connected to \(s\) by an undirected path with no full forward or empty backward edges.
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
Questions.

- How to compute a mincut? **Easy. ✓**
- How to find an augmenting path? **BFS works well.**
- If FF terminates, does it always compute a maxflow? **Yes. ✓**
- Does FF always terminate? If so, after how many augmentations?

 - yes, provided edge capacities are integers (or augmenting paths are chosen carefully)
 - requires clever analysis
Ford-Fulkerson algorithm with integer capacities

Important special case. Edge capacities are integers between 1 and U.

Invariant. The flow is integer-valued throughout Ford-Fulkerson.

Pf. [by induction]
- Bottleneck capacity is an integer.
- Flow on an edge increases/decreases by bottleneck capacity.

Proposition. Number of augmentations \leq the value of the maxflow.

Pf. Each augmentation increases the value by at least 1.

Integrality theorem. There exists an integer-valued maxflow.

Pf. Ford-Fulkerson terminates and maxflow that it finds is integer-valued.
Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

initialize with 0 flow
Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.
Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.
Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.
Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.
Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.
Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

199th iteration
Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

200th iteration
Bad case for Ford-Fulkerson

Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

![Diagram showing the Ford-Fulkerson algorithm]

Good news. This case is easily avoided. [use shortest/fattest path]
How to choose augmenting paths?

FF performance depends on choice of augmenting paths.

<table>
<thead>
<tr>
<th>augmenting path</th>
<th>number of paths</th>
<th>implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>(\leq \frac{1}{2} E V)</td>
<td>queue (BFS)</td>
</tr>
<tr>
<td>fattest path</td>
<td>(\leq E \ln(E U))</td>
<td>priority queue</td>
</tr>
<tr>
<td>random path</td>
<td>(\leq E U)</td>
<td>randomized queue</td>
</tr>
<tr>
<td>DFS path</td>
<td>(\leq E U)</td>
<td>stack (DFS)</td>
</tr>
</tbody>
</table>

digraph with V vertices, E edges, and integer capacities between 1 and U
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
Flow network representation

Flow edge data type. Associate flow f_e and capacity c_e with edge $e = v \rightarrow w$.

Flow network data type. Need to process edge $e = v \rightarrow w$ in either direction: Include e in both v and w's adjacency lists.

Residual capacity.
- Forward edge: residual capacity $= c_e - f_e$.
- Backward edge: residual capacity $= f_e$.

Augment flow.
- Forward edge: add Δ.
- Backward edge: subtract Δ.
Flow network representation

Residual network. A useful view of a flow network.

Key point. Augmenting path in original network is equivalent to directed path in residual network.
Flow edge API

public class FlowEdge

 FlowEdge(int v, int w, double capacity) // create a flow edge v→w
 int from() // vertex this edge points from
 int to() // vertex this edge points to
 int other(int v) // other endpoint
 double capacity() // capacity of this edge
 double flow() // flow in this edge
 double residualCapacityTo(int v) // residual capacity toward v
 void addResidualFlowTo(int v, double delta) // add delta flow toward v
 String toString() // string representation

```
\begin{tikzpicture}
\node[shape=circle,draw=black] (V) at (0,0.5) {$v$};
\node[shape=circle,draw=black] (W) at (2.5,0.5) {$w$};
\node[shape=circle,draw=black] (V') at (0,-1) {$v'$};
\node[shape=circle,draw=black] (W') at (2.5,-1) {$w'$};
\draw[->, thick] (V) -- (W) node [midway, below] {$7/9$};
\draw[->, thick] (W) -- (V) node [midway, above] {$2$};
\draw[->, thick, red] (V') -- (W') node [midway, above] {$7$};
\end{tikzpicture}
```
Flow edge: Java implementation

```java
public class FlowEdge {
    private final int v, w; // from and to
    private final double capacity; // capacity
    private double flow; // flow

    public FlowEdge(int v, int w, double capacity) {
        this.v = v;
        this.w = w;
        this.capacity = capacity;
    }

    public int from() { return v; }
    public int to() { return w; }
    public double capacity() { return capacity; }
    public double flow() { return flow; }

    public int other(int vertex) {
        if (vertex == v) return w;
        else if (vertex == w) return v;
        else throw new RuntimeException("Illegal endpoint");
    }

    public double residualCapacityTo(int vertex) { /*...*/ }
    public void addResidualFlowTo(int vertex, double delta) { /*...*/ }
}
```
public double residualCapacityTo(int vertex)
{
 if (vertex == v) return flow;
 else if (vertex == w) return capacity - flow;
 else throw new IllegalArgumentException();
}

public void addResidualFlowTo(int vertex, double delta)
{
 if (vertex == v) flow -= delta;
 else if (vertex == w) flow += delta;
 else throw new IllegalArgumentException();
}
Flow network API

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public class FlowNetwork</td>
<td></td>
</tr>
<tr>
<td><code>FlowNetwork(int V)</code></td>
<td>create an empty flow network with V vertices</td>
</tr>
<tr>
<td><code>FlowNetwork(In in)</code></td>
<td>construct flow network input stream</td>
</tr>
<tr>
<td><code>void addEdge(FlowEdge e)</code></td>
<td>add flow edge e to this flow network</td>
</tr>
<tr>
<td><code>Iterable<FlowEdge> adj(int v)</code></td>
<td>forward and backward edges incident to v</td>
</tr>
<tr>
<td><code>Iterable<FlowEdge> edges()</code></td>
<td>all edges in this flow network</td>
</tr>
<tr>
<td><code>int V()</code></td>
<td>number of vertices</td>
</tr>
<tr>
<td><code>int E()</code></td>
<td>number of edges</td>
</tr>
<tr>
<td><code>String toString()</code></td>
<td>string representation</td>
</tr>
</tbody>
</table>

Conventions. Allow self-loops and parallel edges.
public class FlowNetwork
{
 private final int V;
 private Bag<FlowEdge>[] adj;

 public FlowNetwork(int V)
 {
 this.V = V;
 adj = (Bag<FlowEdge>[][]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<FlowEdge>();
 }

 public void addEdge(FlowEdge e)
 {
 int v = e.from();
 int w = e.to();
 adj[v].add(e);
 adj[w].add(e);
 }

 public Iterable<FlowEdge> adj(int v)
 { return adj[v]; }
}
Flow network: adjacency-lists representation

Maintain vertex-indexed array of FlowEdge lists (use Bag abstraction).
public class FordFulkerson
{
 private boolean[] marked; // true if s->v path in residual network
 private FlowEdge[] edgeTo; // last edge on s->v path
 private double value; // value of flow

 public FordFulkerson(FlowNetwork G, int s, int t)
 {
 value = 0.0;
 while (hasAugmentingPath(G, s, t))
 {
 double bottle = Double.POSITIVE_INFINITY;
 for (int v = t; v != s; v = edgeTo[v].other(v))
 bottle = Math.min(bottle, edgeTo[v].residualCapacityTo(v));

 for (int v = t; v != s; v = edgeTo[v].other(v))
 edgeTo[v].addResidualFlowTo(v, bottle);

 value += bottle;
 }
 }

 private boolean hasAugmentingPath(FlowNetwork G, int s, int t)
 { /* See next slide. */ }

 public double value()
 { return value; }

 public boolean inCut(int v)
 { return marked[v]; }
}
Finding a shortest augmenting path (cf. breadth-first search)

```java
private boolean hasAugmentingPath(FlowNetwork G, int s, int t) {
    edgeTo = new FlowEdge[G.V()];
    marked = new boolean[G.V()];

    Queue<Integer> queue = new Queue<Integer>();
    queue.enqueue(s);
    marked[s] = true;
    while (!queue.isEmpty())
    {
        int v = queue.dequeue();

        for (FlowEdge e : G.adj(v))
        {
            int w = e.other(v);
            if (e.residualCapacityTo(w) > 0 && !marked[w])
            {
                edgeTo[w] = e;
                marked[w] = true;
                queue.enqueue(w);
            }
        }
    }

    return marked[t];
}
```
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
Maxflow and mincut applications

Maxflow/mincut is a widely applicable problem-solving model.

- Data mining.
- Open-pit mining.
- Bipartite matching.
- Network reliability.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Distributed computing.
- Security of statistical data.
- Egalitarian stable matching.
- Multi-camera scene reconstruction.
- Sensor placement for homeland security.
- Many, many, more.
Bipartite matching problem

N students apply for N jobs.

Each gets several offers.

Is there a way to match all students to jobs?

bipartite matching problem

1. Alice
 - Adobe
 - Amazon
 - Google

2. Bob
 - Adobe
 - Amazon

3. Carol
 - Adobe
 - Facebook
 - Google

4. Dave
 - Amazon
 - Yahoo

5. Eliza
 - Amazon
 - Yahoo

6. Adobe
 - Alice
 - Bob
 - Carol

7. Amazon
 - Alice
 - Bob

8. Facebook
 - Dave
 - Eliza
 - Carol

9. Google
 - Alice
 - Carol

10. Yahoo
 - Dave
 - Eliza
Bipartite matching problem

Given a bipartite graph, find a perfect matching.

perfect matching (solution)

<table>
<thead>
<tr>
<th>N students</th>
<th>N companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>Google</td>
</tr>
<tr>
<td>Bob</td>
<td>Adobe</td>
</tr>
<tr>
<td>Carol</td>
<td>Facebook</td>
</tr>
<tr>
<td>Dave</td>
<td>Yahoo</td>
</tr>
<tr>
<td>Eliza</td>
<td>Amazon</td>
</tr>
</tbody>
</table>

bipartite graph

1 -- 6
2 -- 7
3 -- 8
4 -- 9
5 -- 10

1. Alice
 - Adobe
 - Amazon
 - Google
2. Bob
 - Adobe
 - Amazon
3. Carol
 - Adobe
 - Facebook
 - Google
4. Dave
 - Amazon
 - Yahoo
5. Eliza
 - Amazon
 - Yahoo
6. Adobe
 - Alice
 - Bob
 - Carol
7. Amazon
 - Alice
 - Bob
8. Facebook
 - Dave
 - Eliza
9. Google
 - Alice
 - Carol
10. Yahoo
 - Dave
 - Eliza
Network flow formulation of bipartite matching

- Create s, t, one vertex for each student, and one vertex for each job.
- Add edge from s to each student (capacity 1).
- Add edge from each job to t (capacity 1).
- Add edge from student to each job offered (infinite capacity).
Network flow formulation of bipartite matching

1-1 correspondence between perfect matchings in bipartite graph and integer-valued maxflows of value N.

flow network

bipartite matching problem

1 Alice
 Adobe
 Amazon
 Google

2 Bob
 Adobe
 Amazon

3 Carol
 Adobe
 Facebook
 Google

4 Dave
 Amazon
 Yahoo

5 Eliza
 Amazon
 Yahoo

6 Adobe
 Alice
 Bob
 Carol

7 Amazon
 Alice
 Bob
 Dave
 Eliza

8 Facebook
 Carol

9 Google
 Alice
 Carol

10 Yahoo
 Dave
 Eliza
What the mincut tells us

Goal. When no perfect matching, explain why.

\[S = \{ 2, 4, 5 \} \]
\[T = \{ 7, 10 \} \]

student in \(S \) can be matched only to companies in \(T \)

\[|S| > |T| \]

no perfect matching exists
What the mincut tells us

Mincut. Consider mincut \((A, B)\).
- Let \(S\) = students on \(s\) side of cut.
- Let \(T\) = companies on \(s\) side of cut.
- Fact: \(|S| > |T|\); students in \(S\) can be matched only to companies in \(T\).

Bottom line. When no perfect matching, mincut explains why.
Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

<table>
<thead>
<tr>
<th>i</th>
<th>team</th>
<th>wins</th>
<th>losses</th>
<th>to play</th>
<th>ATL</th>
<th>PHI</th>
<th>NYM</th>
<th>MON</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Atlanta</td>
<td>83</td>
<td>71</td>
<td>8</td>
<td>–</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Philly</td>
<td>80</td>
<td>79</td>
<td>3</td>
<td>1</td>
<td>–</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>New York</td>
<td>78</td>
<td>78</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Montreal</td>
<td>77</td>
<td>82</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>–</td>
</tr>
</tbody>
</table>

Montreal is mathematically eliminated.

- Montreal finishes with ≤ 80 wins.
- Atlanta already has 83 wins.
Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

<table>
<thead>
<tr>
<th>i</th>
<th>team</th>
<th>wins</th>
<th>losses</th>
<th>to play</th>
<th>ATL</th>
<th>PHI</th>
<th>NYM</th>
<th>MON</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Atlanta</td>
<td>83</td>
<td>71</td>
<td>8</td>
<td>–</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>Philly</td>
<td>80</td>
<td>79</td>
<td>3</td>
<td>1</td>
<td>–</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>New York</td>
<td>78</td>
<td>78</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Montreal</td>
<td>77</td>
<td>82</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>–</td>
</tr>
</tbody>
</table>

Philadelphia is mathematically eliminated.
- Philadelphia finishes with ≤ 83 wins.
- Either New York or Atlanta will finish with ≥ 84 wins.

Observation. Answer depends not only on how many games already won and left to play, but on whom they're against.
Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

<table>
<thead>
<tr>
<th>i</th>
<th>team</th>
<th>wins</th>
<th>losses</th>
<th>to play</th>
<th>NYY</th>
<th>BAL</th>
<th>BOS</th>
<th>TOR</th>
<th>DET</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>New York</td>
<td>75</td>
<td>59</td>
<td>28</td>
<td>–</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>Baltimore</td>
<td>71</td>
<td>63</td>
<td>28</td>
<td>3</td>
<td>–</td>
<td>2</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Boston</td>
<td>69</td>
<td>66</td>
<td>27</td>
<td>8</td>
<td>2</td>
<td>–</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Toronto</td>
<td>63</td>
<td>72</td>
<td>27</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Detroit</td>
<td>49</td>
<td>86</td>
<td>27</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>–</td>
</tr>
</tbody>
</table>

AL East (August 30, 1996)

Detroit is mathematically eliminated.

- Detroit finishes with \(\leq 76 \) wins.
- Wins for \(R = \{ \text{NYY, BAL, BOS, TOR} \} = 278 \).
- Remaining games among \(\{ \text{NYY, BAL, BOS, TOR} \} = 3 + 8 + 7 + 2 + 7 = 27 \).
- Average team in \(R \) wins \(305/4 = 76.25 \) games.
Baseball elimination problem: maxflow formulation

Intuition. Remaining games flow from \(s \) to \(t \).

Fact. Team 4 not eliminated iff all edges pointing from \(s \) are full in maxflow.
Maximum flow algorithms: theory

(Yet another) holy grail for theoretical computer scientists.

<table>
<thead>
<tr>
<th>year</th>
<th>method</th>
<th>worst case</th>
<th>discovered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td>simplex</td>
<td>$E^3 U$</td>
<td>Dantzig</td>
</tr>
<tr>
<td>1955</td>
<td>augmenting path</td>
<td>$E^2 U$</td>
<td>Ford-Fulkerson</td>
</tr>
<tr>
<td>1970</td>
<td>shortest augmenting path</td>
<td>E^3</td>
<td>Dinitz, Edmonds-Karp</td>
</tr>
<tr>
<td>1970</td>
<td>fattest augmenting path</td>
<td>$E^2 \log E \log(EU)$</td>
<td>Dinitz, Edmonds-Karp</td>
</tr>
<tr>
<td>1977</td>
<td>blocking flow</td>
<td>$E^{5/2}$</td>
<td>Cherkasky</td>
</tr>
<tr>
<td>1978</td>
<td>blocking flow</td>
<td>$E^{7/3}$</td>
<td>Galil</td>
</tr>
<tr>
<td>1983</td>
<td>dynamic trees</td>
<td>$E^2 \log E$</td>
<td>Sleator-Tarjan</td>
</tr>
<tr>
<td>1985</td>
<td>capacity scaling</td>
<td>$E^2 \log U$</td>
<td>Gabow</td>
</tr>
<tr>
<td>1997</td>
<td>length function</td>
<td>$E^{3/2} \log E \log U$</td>
<td>Goldberg-Rao</td>
</tr>
<tr>
<td>2012</td>
<td>compact network</td>
<td>$E^2 / \log E$</td>
<td>Orlin</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>E</td>
<td>?</td>
</tr>
</tbody>
</table>

Maxflow algorithms for sparse digraphs with E edges, integer capacities between 1 and U.
Maximum flow algorithms: practice

Warning. Worst-case order-of-growth is generally not useful for predicting or comparing maxflow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: $E^{3/2}$.

On Implementing Push-Relabel Method for the Maximum Flow Problem

Boris V. Cherkassky1 and Andrew V. Goldberg2

1 Central Institute for Economics and Mathematics, Krasikova St. 32, 117418, Moscow, Russia
cher@cemi.nsk.su
2 Computer Science Department, Stanford University
Stanford, CA 94305, USA
goldberg@cs.stanford.edu

Abstract. We study efficient implementations of the push-relabel method for the maximum flow problem. The resulting codes are faster than the previous codes, and much faster on some problem families. The speedup is due to the combination of heuristics used in our implementations. We also exhibit a family of problems for which the running time of all known methods seem to have a roughly quadratic growth rate.
Summary

Mincut problem. Find an st-cut of minimum capacity.
Maxflow problem. Find an st-flow of maximum value.
Duality. Value of the maxflow = capacity of mincut.

Proven successful approaches.
• Ford-Fulkerson (various augmenting-path strategies).
• Preflow-push (various versions).

Open research challenges.
• Practice: solve real-world maxflow/mincut problems in linear time.
• Theory: prove it for worst-case inputs.
• Still much to be learned!
6.4 Maximum Flow

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications
6.4 MAXIMUM FLOW

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications