4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

![Diagram of directed graph with vertex and path annotations]
Road network

Vertex = intersection; edge = one-way street.
Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008
Implication graph

Vertex = variable; edge = logical implication.

if x_5 is true, then x_0 is true
Combinational circuit

Vertex = logical gate; edge = wire.
WordNet graph

Vertex = synset; edge = hypernym relationship.

http://wordnet.princeton.edu
The McChrystal Afghanistan PowerPoint slide

Digraph applications

<table>
<thead>
<tr>
<th>digraph</th>
<th>vertex</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>
Some digraph problems

Path. Is there a directed path from s to t?

Shortest path. What is the shortest directed path from s to t?

Topological sort. Can you draw a digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices v and w is there a path from v to w?

PageRank. What is the importance of a web page?
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Digraph API

```
public class Digraph

    Digraph(int V)  // create an empty digraph with V vertices
    Digraph(In in)  // create a digraph from input stream

    void addEdge(int v, int w)  // add a directed edge v→w

    Iterable<Integer> adj(int v)  // vertices pointing from v
        int V()  // number of vertices
        int E()  // number of edges

    Digraph reverse()  // reverse of this digraph

    String toString()  // string representation
```

```
In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "->" + w);
```
Digraph API

% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
:
11->4
11->12
12->9

In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 StdOut.println(v + "->" + w);

read digraph from input stream
print out each edge (once)
Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.
Adjacency-lists graph representation (review): Java implementation

```java
public class Graph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

- **adjacency lists**
- **create empty graph with V vertices**
- **add edge v–w**
- **iterator for vertices adjacent to v**
Adjacency-lists digraph representation: Java implementation

```java
public class Digraph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Digraph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

- **Adjacency lists**
- **Create empty digraph with V vertices**
- **Add edge v→w**
- **Iterator for vertices pointing from v**
Digraph representations

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>insert edge from v to w</th>
<th>edge from v to w?</th>
<th>iterate over vertices pointing from v?</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>E</td>
<td>1</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>V^2</td>
<td>1†</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>$E + V$</td>
<td>1</td>
<td>outdegree(v)</td>
<td>outdegree(v)</td>
</tr>
</tbody>
</table>

† disallows parallel edges

huge number of vertices, small average vertex degree
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Reachability

Problem. Find all vertices reachable from s along a directed path.
Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked vertices w pointing from v.
Depth-first search demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

![Directed Graph](image)
Depth-first search demo

To visit a vertex v:

- Mark vertex v as visited.
- Recursively visit all unmarked vertices pointing from v.

<table>
<thead>
<tr>
<th>v</th>
<th>marked[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>–</td>
</tr>
</tbody>
</table>
Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```java
public class DepthFirstSearch {
    private boolean[] marked;

    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

- true if path to s
- constructor marks vertices connected to s
- recursive DFS does the work
- client can ask whether any vertex is connected to s
Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]

```java
public class DirectedDFS {
    private boolean[] marked;

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }

    public boolean visited(int v) {
        return marked[v];
    }
}
```

true if path from s
constructor marks vertices reachable from s
recursive DFS does the work
client can ask whether any vertex is reachable from s
Reachability application: program control-flow analysis

Every program is a digraph.
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.
Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- **Vertex** = object.
- **Edge** = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).
Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).
Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

✓ • Reachability.
 • Path finding.
 • Topological sort.
 • Directed cycle detection.

Basis for solving difficult digraph problems.

• 2-satisfiability.
• Directed Euler path.
• Strongly-connected components.
Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v
- for each unmarked vertex pointing from v:
 add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to $E + V$.

Directed breadth-first search demo

Repeat until queue is empty:
- Remove vertex v from queue.
- Add to queue all unmarked vertices pointing from v and mark them.

```
tinyDG2.txt
V
6
8
5 0
2 4
3 2
1 2
0 1
4 3
3 5
0 2
```

Graph G
Directed breadth-first search demo

Repeat until queue is empty:
- Remove vertex \(v \) from queue.
- Add to queue all unmarked vertices pointing from \(v \) and mark them.

<table>
<thead>
<tr>
<th>(v)</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to each other vertex.

Ex. \(S = \{ 1, 7, 10 \} \).
- Shortest path to 4 is 7\(\rightarrow \)6\(\rightarrow \)4.
- Shortest path to 5 is 7\(\rightarrow \)6\(\rightarrow \)0\(\rightarrow \)5.
- Shortest path to 12 is 10\(\rightarrow \)12.
- ...

Q. How to implement multi-source shortest paths algorithm?
A. Use BFS, but initialize by enqueuing all source vertices.
Breadth-first search in digraphs application: web crawler

Solution. [BFS with implicit digraph]
- Choose root web page as source \(s \).
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

Q. Why not use DFS?
Bare-bones web crawler: Java implementation

```java
Queue<String> queue = new Queue<String>();
SET<String> marked = new SET<String>();

String root = "http://www.princeton.edu";
quueues.enqueue(root);
marked.add(root);

while (!queue.isEmpty())
{
   String v = queue.dequeue();
   StdOut.println(v);
   In in = new In(v);
   String input = in.readAll();

   String regexp = "http://([^\w\./]*)([^\w]+)";
   Pattern pattern = Pattern.compile(regexp);
   Matcher matcher = pattern.matcher(input);
   while (matcher.find())
   {
      String w = matcher.group();
      if (!marked.contains(w))
      {
         marked.add(w);
         queue.enqueue(w);
      }
   }
}
```

- Queue of websites to crawl
- Set of marked websites
- Start crawling from root website
- Read in raw html from next website in queue
- Use regular expression to find all URLs in website of form http://xxx.yyy.zzz [crude pattern misses relative URLs]
- If unmarked, mark it and put on the queue
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

0. Algorithms
1. Complexity Theory
2. Artificial Intelligence
3. Intro to CS
4. Cryptography
5. Scientific Computing
6. Advanced Programming

tasks

precedence constraint graph

feasible schedule
Topological sort

DAG. Directed *acyclic* graph.

Topological sort. Redraw DAG so all edges point upwards.

```
0→5  0→2
0→1  3→6
3→5  3→4
5→2  6→4
6→0  3→2
1→4
```

directed edges

Solution. DFS. What else?
Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

a directed acyclic graph
Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

postorder
4 1 2 5 0 6 3

topological order
3 6 0 5 2 1 4

done
Depth-first search order

```java
public class DepthFirstOrder {
    private boolean[] marked;
    private Stack<Integer> reversePost;

    public DepthFirstOrder(Digraph G) {
        reversePost = new Stack<Integer>();
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
        reversePost.push(v);
    }

    public Iterable<Integer> reversePost() {
        return reversePost;
    }
}
```

returns all vertices in “reverse DFS postorder”
Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When $dfs(v)$ is called:

- **Case 1:** $dfs(w)$ has already been called and returned. Thus, w was done before v.

- **Case 2:** $dfs(w)$ has not yet been called. $dfs(w)$ will get called directly or indirectly by $dfs(v)$ and will finish before $dfs(v)$. Thus, w will be done before v.

- **Case 3:** $dfs(w)$ has already been called, but has not yet returned.
 Can’t happen in a DAG: function call stack contains path from w to v, so $v \rightarrow w$ would complete a cycle.

All vertices pointing from 3 are done before 3 is done, so they appear after 3 in topological order.
Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.

Pf.
- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.

Solution. DFS. What else? See textbook.
Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

![Table of courses and prerequisites](http://xkcd.com/754)

Remark. A directed cycle implies scheduling problem is infeasible.
Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```java
public class A extends B {
    ...
}

public class B extends C {
    ...
}

public class C extends A {
    ...
}

% javac A.java
A.java:1: cyclic inheritance involving class A
public class A extends B {} ^
1 error
Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>"=B1 + 1"</td>
<td>"=C1 + 1"</td>
<td>"=A1 + 1"</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Microsoft Excel cannot calculate a formula.

Cell references in the formula refer to the formula's result, creating a circular reference. Try one of the following:

- If you accidentally created the circular reference, click OK. This will display the Circular Reference toolbar and help for using it to correct your formula.
- To continue leaving the formula as it is, click Cancel.
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Strongly-connected components

**Def.** Vertices $v$ and $w$ are **strongly connected** if there is both a directed path from $v$ to $w$ and a directed path from $w$ to $v$.

**Key property.** Strong connectivity is an **equivalence relation**:
- $v$ is strongly connected to $v$.
- If $v$ is strongly connected to $w$, then $w$ is strongly connected to $v$.
- If $v$ is strongly connected to $w$ and $w$ to $x$, then $v$ is strongly connected to $x$.

**Def.** A **strong component** is a maximal subset of strongly-connected vertices.
Connected components vs. strongly-connected components

v and w are **connected** if there is a path between v and w

v and w are **strongly connected** if there is both a directed path from v to w and a directed path from w to v

A digraph and its strong components

A graph and its connected components

Connected component id (easy to compute with DFS)

<table>
<thead>
<tr>
<th>v</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

`cc[]`:

<table>
<thead>
<tr>
<th>v</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Strongly-connected component id (how to compute?)

<table>
<thead>
<tr>
<th>v</th>
<th>w</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

`scc[]`:

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

Constant-time client connectivity query

public int stronglyConnected(int v, int w)
{ return scc[v] == scc[w]; }

Constant-time client strong-connectivity query
Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.
Strong component application: software modules

Software module dependency graph.
- Vertex = software module.
- Edge: from module to dependency.

**Strong component.** Subset of mutually interacting modules.

**Approach 1.** Package strong components together.
**Approach 2.** Use to improve design!
Strong components algorithms: brief history

1960s: Core OR problem.
- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.
Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in $G$ are same as in $G^R$.

Kernel DAG. Contract each strong component into a single vertex.

Idea.
- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.
Kosaraju-Sharir algorithm demo

**Phase 1.** Compute reverse postorder in $G^R$.

**Phase 2.** Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^R$. 

digraph G
Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in $G^R$.

1 0 2 4 5 3 11 9 12 10 6 7 8

reverse digraph $G^R$
Kosaraju-Sharir algorithm demo

**Phase 2.** Run DFS in $G$, visiting unmarked vertices in reverse postorder of $G^R$.

$$
\begin{align*}
1 & \quad 0 & \quad 2 & \quad 4 & \quad 5 & \quad 3 & \quad 11 & \quad 9 & \quad 12 & \quad 10 & \quad 6 & \quad 7 & \quad 8
\end{align*}
$$

<table>
<thead>
<tr>
<th>v</th>
<th>scc[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

done
Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
- Phase 1: run DFS on $G^R$ to compute reverse postorder.
- Phase 2: run DFS on $G$, considering vertices in order given by first DFS.

DFS in reverse digraph $G^R$

check unmarked vertices in the order
0 1 2 3 4 5 6 7 8 9 10 11 12
reverse postorder for use in second dfs()
1 0 2 4 5 3 11 9 12 10 6 7 8

dfs(0)
  dfs(6)
    dfs(8)
      check 6
      8 done
dfs(7)
    7 done
dfs(4)
  dfs(2)
    dfs(11)
      dfs(12)
        check 11
dfs(10)
      check 9
dfs(9)
    10 done
dfs(3)
check 12
check 7
check 6
Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on $G^R$ to compute reverse postorder.
- Phase 2: run DFS on $G$, considering vertices in order given by first DFS.
Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to $E + V$.

Pf.
- Running time: bottleneck is running DFS twice (and computing $G^R$).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!
public class CC
{
    private boolean marked[];
    private int[] id;
    private int count;

    public CC(Graph G)
    {
        marked = new boolean[G.V()];
        id = new int[G.V()];

        for (int v = 0; v < G.V(); v++)
        {
            if (!marked[v])
            {
                dfs(G, v);
                count++;
            }
        }
    }

    private void dfs(Graph G, int v)
    {
        marked[v] = true;
        id[v] = count;
        for (int w : G.adj(v))
        {
            if (!marked[w])
            {
                dfs(G, w);
            }
        }
    }

    public boolean connected(int v, int w)
    {
        return id[v] == id[w];
    }
}
Strong components in a digraph (with two DFSs)

```java
public class KosarajuSharirSCC {
 private boolean marked[];
 private int[] id;
 private int count;

 public KosarajuSharirSCC(Digraph G) {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
 for (int v : dfs.reversePost()) {
 if (!marked[v]) {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Digraph G, int v) {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

 public boolean stronglyConnected(int v, int w) {
 return id[v] == id[w];
 }
}
```
Single-source reachability in a digraph

Topological sort in a DAG

Strong components in a digraph

Kosaraju-Sharir DFS (twice)
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components