
COS 226 Written Exam 2 Fall 2016

There are ten questions on this exam, weighted as indicated at the bottom of this page. There is
one question per lecture, numbered corresponding Lectures 12–21, not in order of difficulty. If a
question seems difficult to you, skip it and come back to it.

Policies. The exam is closed book, though that you are allowed to use a single-page one-sided
hand-written cheatsheet. No calculators or other electronic devices are permitted. Give your
answers and show your work in the space provided. You will have 80 minutes to complete the
test. This exam is preprocessed by computer. If you use pencil (and eraser), write darkly.
Blacken circles or squares completely when asked. Write all answers inside the designated
rectangles. Do not write on the corner marks.

This page. Print your name, login ID, and precept number on this page (now), and write out and
sign the Honor Code pledge.

Discussing this exam. As you know, discussing the contents of this exam before solutions have
been posted is a serious violation of the Honor Code.

“I pledge my honor that I have not violated the Honor Code during this examination.”

[copy the pledge here]

[signature]

Name

Login

Precept

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 TOTAL

/7 /7 /7 /7 /7 /7 /7 /7 /7 /7 /70

Q12. Undirected graphs. 

A. Consider the following implementation of a graph-processing class that is supposed to
allow clients to test whether two vertices are connected:

public class CC  
{  
 private int[] id;  
 private int count = 1;

 public CC(Graph G)  
 {  
 id = new int[G.V()];;  
 for (int s = 0; s < G.v(); s++)  
 if (id[s] == 0)  
 { dfs(G, s); count++; }  
 }

 private void dfs(Graph G, int v)  
 {  
 /* MISSING LINE OF CODE */  
 for (int w : G.adj(v))  
 if (id[w] == 0)  
 dfs(G, w);  
 }

 public boolean connected(int v, int w)  
 { return id[v] == id[w]; }  
}

 In the box below, write the one line of Java code that is missing from the private dfs(). 

B. Blacken a circle on each line to indicate whether each statement is True or False.

True False

DFS is not an appropriate strategy for determining whether a graph
contains a cycle.

With DFS, we can support constant-time connectivity queries in an
undirected graph, using linear space and linear preprocessing time.

Union-find is preferable to DFS for connectivity when edge insertion
must be supported. �

�

��

�

�

Q13. Digraphs. Consider the digraph drawn
at right. Assume that, in the internal
representation, all vertices appear in
numerical order in each adjacency list. In the
table below, indicate the order in which the
vertices appear in reverse postorder for a
depth-first search starting at 0. Your answer
must have exactly one blackened circle in
each row and each column.

first second third fourth fifth sixth seventh

0

1

2

3

4

5

6

"

"

"

"

"

"

"

" "

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

" "

"

"

"

"

"

"

"

Q14. MSTs. Consider the weighted graph drawn
at right. Assume that, in the internal
representation, all vertices appear in numerical
order in each adjacency list. In the table below,
indicate the order in which the vertices are added
to the MST for Prim's algorithm starting at 0.
Your answer must have exactly one blackened
circle in each row and each column.

first second third fourth fifth sixth seventh

0

1

2

3

4

5

6

"

"

"

"

"

"

"

" "

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

" "

"

"

"

"

"

"

"

Q15. Shortest paths. In each square at right, write the letter corresponding to the algorithm with
the best worst-case running time to find a shortest paths tree for the corresponding type of graph,
assuming that at least half of the vertices are reachable from the starting point. You may use each
letter once, more than once, or not at all.

 

A Kosaraju-Sharir

B Bellman-Ford digraph with positive edge weights

C brute force DAG with positive edge weights

D Dijkstra
DAG with edge weights that could be

negative

E topological sort
digraph with edge weights that could

be negative

F Kruskal
digraph with edge weights that could

be negative but no negative cycles

G Prim digraph with negative cycles not
reachable from the start

H none of the
above

Q16. Maxflow. Consider the flow network drawn
at right. As usual, each directed edge is labeled
with its flow and its capacity, separated by a slash.

A. The table below lists a number of paths in the
underlying undirected graph. Considering these
pa ths ind iv idua l l y , b lacken the c i rc l e
corresponding to the correct characterization of
each path. Your answer must have one blackened
circle in each row except if you think that one or
more of the paths is both shortest and fattest.

B. Blacken the one circle corresponding to the value of the maxflow in this network.

not an
augmenting

path

a shortest
augmenting

path

a fattest
augmenting

path

0-1-4-6

0-1-4-3-6

0-5-3-6

0-5-2-3-6

0-2-3-4-6 "

�"

�

�

�"

�

�

�"

�"

�

�

7 8 9 10 11 12 13 14 15

�� �� ��� ��

Q17. String sorts. The column on the left is an array of strings to be sorted. The column on the
right is in sorted order. The other columns are the contents of the array at some intermediate step
during one of the algorithms below. Write the letter corresponding to the correct algorithm
under the corresponding column. You will need to use some letters more than once. Hint : Do
not trace code—think about algorithm invariants.

input sorted result

ghana spain aruba aruba aruba chile ghana nepal aruba
sudan italy benin benin burma egypt malta sudan benin
wales ghana burma burma benin benin china qatar burma
nepal gabon china congo china congo aruba macau chile
italy libya congo chile congo burma kenya aruba china
malta macau chile china chile china india yemen congo
niger sudan egypt egypt egypt aruba libya niger egypt
china india ghana gabon ghana gabon burma wales gabon
yemen niger gabon ghana gabon ghana zaire congo ghana
haiti chile haiti haiti haiti haiti chile india haiti
aruba china italy kenya italy kenya haiti spain india
kenya zaire india spain india spain nepal benin italy
spain haiti kenya india kenya india sudan chile kenya
india wales libya libya libya libya yemen italy libya
libya malta malta yemen malta yemen spain burma macau
burma yemen macau macau macau macau gabon ghana malta
macau congo nepal niger nepal niger benin china nepal
gabon benin niger malta niger malta congo gabon niger
congo kenya qatar italy qatar italy niger egypt qatar
benin nepal sudan nepal sudan nepal qatar zaire spain
egypt burma spain zaire spain zaire wales malta sudan
zaire qatar wales wales wales wales egypt haiti wales
chile aruba yemen qatar yemen qatar macau kenya yemen
qatar egypt zaire sudan zaire sudan italy libya zaire

A ☐☐☐☐☐☐☐ E

A. input

B. LSD radix sort

C. MSD radix sort

D. 3-way radix quicksort (no shuffle)

E. sorted result

Q18. Tries.  

A. Consider the TST
drawn at right. In
the table below,
blacken each of the
s q u a r e s t h a t
correspond to the
strings that were
used to build it.
You do not need to
write the value—
just blacken the
square.

B. Blacken a circle on each line to indicate whether each statement is True or False.

ca ga gc gg tg gaa gag gca gtg gcag gccg gcacg gcaga

☐☐☐☐☐☐ ☐ ☐ ☐ ☐☐ ☐ ☐

True False

The shape of a TST depends only on the set of keys that were used to
build it, not the order in which they were inserted.

Search time in a TST built from randomly ordered keys is logarithmic
in the number of keys on the average.

The height of a TST is dependent on the size of the alphabet �

�

��

�

�

Q19. Substring search. Here is a trace of a Boyer-Moore algorithm (using only the mismatched
character heuristic). Two of the characters in the pattern have been replaced with x and y.

A. Blacken the one circle corresponding to the character that must be represented by y.

B. Blacken the one circle corresponding to the character that must be represented by x.

i j i+j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

E O T H E R B U S I N E S S O F T E L L S y N x H y U x E S

0 6 6 y N x H y U x

7 5 12 y N x H y U x

8 6 14 y N x H y U x

10 6 16 y N x H y U x

17 5 22 y N x H y U x

21 0 21 y N x H y U x

B E F H I L N O R S T U

������ ������

B E F H I L N O R S T U

������ ������

Q20. REs.

A. Drawn below is an NFA (nondeterministic finite state automaton) that recognizes the same
language that the regular expression ((A*B | C)* | D) describes, except that it is missing four
of its ϵ-transitions. In the table below the drawing, blacken the squares corresponding to the
missing transitions.

B. It is easy to build an NFA (nondeterministic finite state automata) corresponding to a regular
expression, and a basic theorem from automata theory says that we can convert every NFA to a
DFA (deterministic finite state automata). Why do we not do so to implement RE pattern
matching? Blacken one circle corresponding to the correct answer.

0-10 1-4 1-6 1-8 1-10 3-2 4-1 4-3 5-6 5-7 9-10 10-1

☐☐☐☐☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐

The NFA might loop.

The DFA might have an exponential number of states.

There might exist a string that the NFA recognizes but the DFA does not.

There might exist a string that the DFA recognizes but the NFA does not.

The proof of the theorem is not constructive (does not tell us how to
construct the DFA from the NFA).

�

�

�

�

�

Q21. Data compression.

A. Suppose that you receive the following message that was encoded using LZW compression:

Your job is to finish decoding the message, by writing one letter in each square:

B. Which of the following best describes the length of the code produced by the LZW
compression algorithm for a string consisting of N characters that are all the same? Blacken one
circle corresponding to the correct answer.

42 41 41 81 82 84 80

B A

log N

(log N)2

N1/2

N

N log N �

�

�

�

�

