
COS 226 Written Exam 1 Fall 2016

There are ten questions on this exam, weighted as indicated at the bottom of this page.
There is one question per lecture, numbered corresponding to the lectures, not in order
of difficulty. If a question seems difficult to you, skip it and come back to it.

Policies. The exam is closed book, though that you are allowed to use a single-page
one-sided hand-written cheatsheet. No calculators or other electronic devices are
permitted. Give your answers and show your work in the space provided. You will have
80 minutes to complete the test. This exam is preprocessed by computer. If you use
pencil (and eraser), write darkly. Fill in circles completely when asked. Write all answers
inside the designated rectangles. Do not write on the corner marks.

This page. Print your name, login ID, and precept number on this page (now), and write
out and sign the Honor Code pledge.

Discussing this exam. As you know, discussing the contents of this exam before
solutions have been posted is a serious violation of the Honor Code.

“I pledge my honor that I have not violated the Honor Code during this examination.”

[copy the pledge here]

[signature]

Name

Login

Precept

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 TOTAL

/8 /8 /7 /7 /7 /9 /7 /6 /8 /8 /75

Q1. Union-Find (8 points). Given 1 billion (N) elements, suppose that a union-find
client performs N union() operations, then N find() operations (one for each
element). Now consider the average cost of these N find() operations (the total
number of array accesses, divided by N). In each row, fill in all circles that correspond
to a true statement about this average cost for the given algorithm. This question is
worth 1 point for each correct answer, but 1 point will be subtracted for each incorrect
answer. 

Quick-find Quick-union Weighted
quick-union

Cannot be larger than 100.

Could be less than 40.

Could be larger than 1 million.

Could be larger than 100 million.

��

�

�

��

�

��

��

�

Q2. Analysis of Algorithms (8 points). Consider the following tables, which give
experimental running times in seconds for four programs A, B, C, and D for various
values of the input size N.

To the right of each option, mark the one-word hypothesis on the order of growth of the
running time that best explains the given experimental evidence.

A B C D

N running
time N running

time N running
time N running

time

1,000 21 100 2 100 3 1,000 2

2,000 80 1,000 25 1,000 36 3,000 17

4,000 325 10,000 260 10,000 400 9,000 150

8,000 1,275 100,000 2,600 100,000 4,500 27,000 1,360

linear linearithmic quadratic cubic

A

B

C

D

!

!!

!!

!!

!!

!!

!!

!!

!

Q3. Stacks and queues (7 points). In each square at right, write the letter
corresponding to the best match among the terms at left. In a correct answer, three
letters will be unused; the other seven appear once each.

 

 averaging cost over multiple operations

A iterator
 a language mechanism that enables

use of the same code for multiple types
of data

B underflow

C amortization an unordered collection

D loitering

E box when an unused memory reference
cannot be reclaimed by the system

F allocation

G resizing object version of a primitive type

H bag

I wrapper
code that keeps track of the process of
returning each item in a collection to a

client

J generics

 a way to handle overflow in stacks and
queues

Q4. Elementary sorts (7 points). For each permutation below, fill in the circle
corresponding to a true statement. This question is worth 1 point for each correct
answer, but 1 point will be subtracted for each incorrect answer.

more than
15

inversions
3-sorted

could occur
exactly
halfway
through
selection

sort

1 2 3 4 5 6 7 8 9

9 8 7 6 5 4 3 2 1

1 2 4 3 5 6 7 8 9

1 5 6 7 8 2 3 4 9

7 4 1 8 5 2 9 6 3

!

�

�!

�

�!

�

�!

�

�!

�

�

Q5. Mergesort (7 points). 

A. (3 points) Consider the following implementation of Mergesort, adapted from the
text:
public class Merge  
{ 
 private static Comparable[] aux;

 private static void merge(Comparable[] a, int lo, int mid, int hi)  
 { /* Merge implementation */ }

 private static void sort(Comparable[] a, Comparable[] aux,  
int lo, int hi)  

 { /* Sort implementation */ }

 public static void sort(Comparable[] a)  
 {  

 /* MISSING LINE OF CODE */  
 sort(a, aux, 0, a.length - 1);  
 }  

}

 In the box below, write the one line of Java code that is missing from the public
sort().

B. Fill in a circle on each line to indicate whether each statement is True or False.

True False

Mergesort is stable.

To sort an array of N elements, standard mergesort
implementations need extra space proportional to N.

Bottom-up mergesort does not require the use of extra space.

Mergesort can be improved by using a different method for
small subarrays. �

�

�

� �

� �

�

Q6. Quicksort (9 points). Answer these questions about fully sorting an array using
quicksort with 3-way partitioning.

A. (3 points) Suppose that the input is a randomly-ordered array with N = 4M
elements in total, having 2M occurrences of each of two different values. Fill in
the one circle on each row that best describes the number of compares used in
each case.

B. (6 points) Suppose that the input is a randomly-ordered array with N = 9M
elements having 3M occurrences of each of three different values. Fill in the one
circle on each row that best describes the number of compares used in each
case.

~2M ~3M ~4M ~5M ~6M

Best case

Average case

Worst case

!!!

!!

!!!

!!

!!!

!!

~9M ~12M ~15M ~16M ~17M ~18M ~21M ~24M ~27M

Best case

Average case

Worst case

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Q7. Priority queues (7 points). In each part of this question, the top row gives the
contents of an array of length 10 representing a binary heap (with array entries not in
the heap left blank) and the bottom row gives the results of an operation on that heap.
Fill in the squares with black outlines. You may fill in all the squares and use the blank
space for scratch, but only squares with black outlines will count for your grade.

A. 0 1 2 3 4 5 6 7 8 9

heap-ordered array W D M C A E F

result of removing the
maximum

B. 0 1 2 3 4 5 6 7 8 9

heap-ordered array W M D E A C

result of inserting G

C. 0 1 2 3 4 5 6 7 8 9

heap-ordered array C B A

result of inserting D

D. 0 1 2 3 4 5 6 7 8 9

heap-ordered array W M F C A E D B

result of removing the
maximum

E. 0 1 2 3 4 5 6 7 8 9

heap-ordered array W P F A D B

result of removing the
maximum C F E

Q8. BSTs (6 points). To the right of each option, fill in the one circle corresponding to
the height of the BST produced when the given keys are inserted in the given order into
an initially empty BST. For reference, the height of a 1-node BST is 1 and the height of a
2-node BST is 2. You may use the rest of this page for scratch space, but only the
marked circles will be used to calculate your grade.

3 4 5 6

C B F A E D

A B C D E F

F E D C B A

!!

!!

!!

!!

!!

!!

Q9. Red-black BSTs (8 points). To the right of each option, fill in the circle
corresponding the the height of the LLRB BST produced when the given keys are
inserted in the given order into an initially empty LLRB BST. You may use the rest of this
page for scratch space, but only the marked circles will be used to calculate your grade.

3 4 5 6

F B D A C E

C B F A E D

A B C D E F

F E D C B A

!

!!

!!

!!

!!

!!

!!

!!

!

Q10. Hashing (8 points). Suppose that the keys A through H have the following hash
values:

Now suppose that the following table results from inserting these keys into an initially
empty table using hashing with linear probing.

Fill in all circles in each row corresponding to keys that fits the description:

key A B C D E F G H I

hash value 5 6 0 8 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

C H I D E A F G B

A B C D

could have been first key inserted

must have been last key inserted

must have been inserted after H

must have been inserted before H

!

!!

!!

!!

!!

!!

!!

!!

!

