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COS 226–Algorithms and Data Structures
Practice Design Questions

Version: May 1, 2017

Exercise 1 – Shortest-Princeton-Path (Final Spring 2011)

Consider the following two graph-processing problems:

• Shortest-Path. Given an edge-weighted digraph G with nonnegative edge weights, a source vertex s, and a desti-
nation vertex t, find a shortest path from s to t.

• Shortest-Princeton-Path. Given an edge-weighted digraph G with nonnegative edge weights, a source vertex s, a
destination vertex t, and with each vertex colored black or orange, find a shortest path from s to t that uses at most one
orange vertex. Assume that the source vertex is not orange.

In the edge-weighted digraph below, the shortest path from A to F is A → D → E → B → C → F (weight 15) but
the the shortest Princeton path is A → B → C → F (weight 18).

Final, Spring 2015

F

A B C

D

weight

2

9

99

5107

destination

source

E

1

4

3

4

0 2

1

weight

2

9

99

10

7 destination

source

3

1 3

1. Give a linear-time reduction from Shortest-Path to Shortest-Princeton-Path. To demonstrate your reduction, draw
the edge-weighted digraph (labeling the source and destination vertices and coloring each vertex black or orange)
that you would construct to solve the Shortest-Path instance above.
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2. Give a linear-time reduction from Shortest-Princeton-Path to Shortest-Path. To demonstrate your reduction, draw
the edge-weighted digraph (labeling the source and destination vertices) that you would construct to solve the
Shortest-Princeton-Path instance on the facing page.

Exercise 2 – Bitonic Max (Midterm Fall 2010)
An array is bitonic if it consists of a strictly increasing sequence of keys immediately followed by a strictly decreasing
sequence of keys. Design an algorithm that determines the maximum key in a bitonic array of size N in time proportional
to logN .

Exercise 3 – Comparing Two Arrays of Points (Midterm Fall 2011)
Given two arrays a[] and b[], each containingN distinct points in the plane, design two algorithms (with the performance
requirements specified below) to determine whether the two arrays contains precisely the same set of points (but possibly
in a different order).

A. Design an algorithm for the problem whose running time is linearithmic in the worst case and uses at most constant
extra space.

B. Design an algorithm for the problem whose running time is linear under reasonable assumptions and uses at most
linear extra space. Be sure to state any assumptions that you make.

Exercise 4 – Stable Priority Queue (Midterm Fall 2010)
A min-based priority queue is stable if min() and delMin() return the minimum key that was least-recently inserted.
Describe how to implement a StableMinPQ data type such that every operation takes at most (amortized) logarithmic
time.

public class StableMinPQ<Item exends <Comparable<Item>>

{

StableMinPQ() // creates an empty priority queue

void insert(Item item) // add an item to the priority queue

Item min() // return the least recently inserted minimum

Item delMin() // delete the minimum (that was least recently

// inserted) from the PQ and return it

int size() // number of elements in the PQ

boolean isEmpty() // returns true if the size is zero

}

Exercise 5 – Stabbing Count Queries (Midterm Fall 2011)
Given a collection of x-intervals and a real value x, a stabbing count query is the number of intervals that contain x. Design
a data structure that supports interval insertions intermixed with stabbing count queries by implementing the following
API:

public class IntervalStab

{

IntervalStab() // create empty data structure
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void insert(double xmin, double xmax) // insert the interval (xmin, xmax)

// into the data structure

int count(double x) // number of intervals that contain x

}

For example, after inserting the five intervals (3, 10), (4, 5), (6, 12), (8, 15), and (19, 30) into the data structure, count(9.1)
is 3 and count(17.2) is 0.

If there are N intervals in the data structure, you should support insert and count in time proportional to logN in
the worst case (even if count() returns N). For simplicity, you may assume that no two intervals contain a left or right
endpoint in common and that the argument to the stabbing count query is not equal to a left or right endpoint.

Exercise 6 – Duplicate Detection in Multiple Arrays (Midterm Fall 2012)
We have already seen in precept ways to detect duplicates in a single array. Here we are given k sorted arrays containing
N keys in total, design an algorithm that determine whether there is any key that appears more than once.

Your algorithm should use extra space at most proportional to k. The best solution should run in time at most propor-
tional to N log k in the worst case; a partial solution exists that runs in time proportional to Nk.
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Exercise 7 – LRU Cache (Midterm Fall 2012)
An LRU cache is a data structures that stores up to N distinct keys. If the data structure is full when a key not already in
the cache is added, the LRU cache first removes the key that was least recently cached. Design a data structure with the
following API:

public class LRU<Item> {

public LRU(int N) // create an empty LRU cache with capacity N

void cache(Item item) // if there are N keys in the cache and the given

// key is not already in the cache, (i) remove

// the key that was least recently used as an

// argument to cache and (ii) add the given key

// to the LRU cache

boolean inCache(Item item) //

}

The operations cache() and inCache() should take constant time on average under the uniform hashing assumption.
For example,

LRU<String> lru = new LRU<String>(5);

// LRU cache (in order of when last cached)

lru.cache(”A”); // A (add A to front)

lru.cache(”B”); // B A (add B to front)

lru.cache(”C”); // C B A (add C to front)

lru.cache(”D”); // D C B A (add D to front)

lru.cache(”E”); // E D C B A (add E to front)

lru.cache(”F”); // F E D C B (remove A from back; add F to front)

boolean b1 = lru.inCache(”C”); // F E D C B (true)

boolean b2 = lru.inCache(”A”); // F E D C B (false)

lru.cache(”D”); // D F E C B (move D to front)

lru.cache(”C”); // C D F E B (move C to front)

lru.cache(”G”); // G C D F E (remove B from back; add G to front)

lru.cache(”H”); // H G C D F (remove E from back; add H to front)

boolean b3 = lru.inCache(”D”); // H G C D F (true)

Describe the data structure(s) that you use. For example, if you use a linear probing hash table, specify what are the hash
table key-value pairs.
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Exercise 8 – Randomized Priority Queue (Midterm Spring 2012)
In one of the assignments, you designed a randomized queue. Here, we are looking to describe how to extend the binary
heap implementation of the MinPQ API, with the methods sample() and delRandom(). The two methods return a key
that is chosen uniformly at random among the remaining keys, with the latter method also removing that key.

public class MinPQ<Item>

{

MinMaxQueue() // creates an empty priority queue

void insert(Item item) // add an item to the priority queue

Item min() // return the minimum from the PQ

Item delMin() // delete the minimum from the PQ and return it

Item sample() // pick a uniformly random key from the PQ

Item delRandom() // return and remove a uniformly random key from the PQ

int size() // number of elements in the PQ

boolean isEmpty() // returns true if the size is zero

}

You should implement the sample() method in constant time and the delRandom() method in time proportional to
logN , where N is the number of keys in the data structure. For simplicity, do not worry about resizing the underlying
array.
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