'Princeton University

Computer Science 217: Introduction to Programming Systems

Modules and Interfaces

-

A Fable

~
(by John C. Reynolds, 1983) Q

T,

Once upon a time, there was a university with a In the other section, Professor Bessel announced
peculiar tenure policy. Al faculty were tenured, and that a complex number was an ordered pair ofreals
could only be dismissed for moral turpitude: the firstof which was nonnegative, and that two
making a false statement in class. Needless to say, complex numbers were equal if their first

the university did not teach computer ~science. components were equal and either the first
However, it had a renowned department of components were zero or the second components
mathematics. differed by a multiple of 2m He then told an
entirely different story about converting reals, “i",
addition, multiplication, conjugation and magnitude.

===

One semester, there was sucha large enrollment
in complex variables that two sections were
scheduled. In one section, Professor Descartes
announced that a complex number was an ordered

pair of reals, and that two complex numbers were Re(r,6) = r cosd
equal when their corresponding components were Im(r,6) = rsing
equal. He went on to explain how to convert reals " f

into complex numbers, what “i" was, how to add, (r8) x (r,6) = (s 6+6) 1= (L2

multiply, and conjugate complex numbers, and how

to find their magnitude.
,d v
3

Re(xy) = x

Then, after their firstclasses, an unfortunate
mistake in the registrar’s office caused the two
sections 1o be interchanged. Despite this, neither
Descartes nor Bessel ever committed moral
trpitude, even though each was judged by the
other’s definitions. The reasonwas that they both
had an intuitive understanding of type. Having

-~/

(21) +(12) =(33) Im(xy) =y

i=(01) defined complex numbers and the primitive

)

=
A Fable

operations upon them, thereafter they spoke ata
level of abstraction that encompassed both of their
definitions.

The moral ofthis fable is that

Type structure i a syntactic discipline for enforcing
levels of abstraction.

For instance, when Descartes introduced the
complex plane, this discipline prevented him from
saying Complex=RealxReal, which would have
contradicted Bessel's definition. Instead, he defined
the mapping f RealxReal-Complex such that
f(x,y)=x+ixy, and proved that this mapping is a
bijection.

More precisely, there is nosuch thing as the setof
complex numbers. Instead, the type " Complex”
denotes an abstraction that canbe realized or
represented by avariety ofsets

John C. Reynolds.
Types dstration, ad pamntric polymomphism
Proauding of the 9" IFIP Worid Conputer Conges 1983

()

Retelling the Fable A

Once upon a time, two software engineering
teams were each building a library catalog system.
In one team, the team leader Dr. Dondero
announced that a symbol table was a linked listof
pairs.

In the other team, Dr. Gunawardena announced
that a symbol table was an array of linked lists,
indexed by a “hash” value.

He then told an entirely different story about

He then went onto define “put’ and “get’) ,
“put’ and “get”

operations on symbol tables.

Then, after their firstteam meetings, an IPO

int SynTable put(caused the two teams to exchange leaders. Each

SynTable T oSymTable,
const char *pcKey,

const void *pwalue) ;

team built a library catalog system using symbol
tables with “add” and “lookup,” even though each
team was using the other team’s implementation of
symbol tables. The reasonwas that Dr. Dondero
and Dr. Gunawardena respected the discipline of
abstract data types: access the symbol table only

through its operations, “put’ and “get”

=
Retelling the Fable

Finally, the team that was using the linkedist
implementation realized that their performance
was slow onlarge datasets: O (N2) time. They
simply substituted the hash-table implementation,
and (other than that) not a single line of code had to
be changed.

-

-
“Programming in the Large” Steps gg

Design & Implement
* Program & programming style (done)
« Common data structures and algorithms (done)
* Modularity <-- we are here

« Building techniques & tools (done)

Debug
« Debugging techniques & tools (done)

Test
« Testing techniques (done)

Maintain
« Performance improvement techniques & tools

*3/5/17

(N
Goals of this Lecture v

Help you leam:
* How to create high quality modules in C

Why?
« Abstraction is a powerful (the only?) technique available for
understanding large, complex systems
« A power programmer knows how to find the abstractions in a large
program
« A power programmer knows how to convey a large program’s
abstractions via its modularity

This is one of the two most important things that will get you
promoted from programmer to team leader (. . . to CTO)
(what’s theother thing? Hint: it's on the southwest side of Washington Road)

J

Abstract Data Type (ADT)

()

A data type has a representation An abstract data type has a hidden

premrae— representation; all “client” code
int key; must access the type through its

" struct Node next; interface operations:

5 struct List;
struct IList {

struct Node *first; struct List * new(void);
b void insert (struct list *p, int key);
- - void concat (struct list *p,
and some operations: struct list *q);
B List * new(void) f int nth key (struct list *p, int n);

struct List *p;
p=(struct List *)malloc (sizeof *p);
assert (p!=NULL);

p->first = NULL;
return p;
}

void insert (struct list *p, int key) ¢
struct Node *n;

n = (struct Node *)malloc(sizeof *n);
assert (n!=NULL);

n->key=key; n->next=p->first; p->first=n;

()
Barbara LiskoV, apioneerin cs %

"An abstract data type definesa class of abstract
objects which iscompletely characterized by the
operations available onthose objects. This means
that an abstract data type can be defined by defining
the characterizing operations for that type."

Barbara Liskov and Stephen Zlles.
"Programming with Abstract Data Types.”
ACM SIGPLAN Conference on Very
High Level Languages, Apil 1974.

!)
()
Specifications ﬁg
If you can't see the representation (or |[struct rist;
he implementations of insert,
concat, nth key), thenhow are :::t List :-::(cmd’un o 3
ou supposed to know what they do? | ioid concat (struct list *p, ‘
struct list *q);
int nthkey (struct list *p, int n)
Alist prepresents asequence ofintegers o.
Operationnew () returns alist p representing the empty sequence.
Operation i nsert(pi),if prepresents g, causes ptonowrepresent i-c.
Operation concat(pq),if prepresents o1 and grepresents oz, causes pto
represent o102 and leaves grepresenting oz.
Operationnth_key (pn),if prepresents o1i ‘oz where the length of v is n,
returns /; otherwise (if the length ofthe string represented by pis<n), it
returns anarbitrary integer
n)

=
Reasoning about client code

A Listp represents a sequence of integers o

struct List;
Operation new() returns alistp

representing the empty sequence. struct List * new(void);
void insert (struct List *p, int key);
Operation insert(pi), ifprepresents o void comcat (struct Iist *p,

causes pto now represent i-c.

Operation concat(pg), if prepresents o1 e e i
and grepresents o2, causes pto represent

o1-c2 and leaves grepresenting the empty

string, int £(void) {
struct List *p, *q;
Operation nth key(pn), if prepresents p = new(); Pl
o1:i~02 where the length of o1 is n, returns i; q = new(); Pl @l
otherwise (if the length of the string insert (p,6); p:l6] @l
represented by pis <n), it returns an insert (p,7); p:07.61 @l
arbitrary integer. insert (q,5); p:[7,6] q:[5]
concat (p,q); p:[7,6,5] Ede)
concat (q,p); p:l] q:17,6,5]
return nth key(q,1); |retum 6
}

(erect List (int lem int rdatar;
A dumb (but correct)

struct List * new(void) {

- = struct List *p = (struct List *)malloc(sizeof(*p)):
implementation | =
T p->data=NULL; [~

)

void insert (struct List *p, int key) {
int i;

int *
[6|
ato1=key

p->len +
p->data = a;
)

P P RNy
ten
daa [

void concat (struct List *p,
struct List *q) (

(int *)malloc((p->lentq->len) *sizeot (int))
+4)

en;

o
q->data = NULL;
)

int nth_key (struct List *p, int n) {
if (0 <= n & n < p->len)
return p->dataln] ;

else return 7;

) 12

*3/5/17

(A smarter
implementation

struct Node {int key; struct Node *next;);
struct List {struct Node *first;};

List * new(void)

struct List *p = (struct List *)malloc(sizeof (*p));
P->first=NULL;

return p;

void insert (struct List *p, int key)
struct Node *n;

“ n (struct Node *)malloc(sizeof *n);
first assert (n!=NULL);

)

void concat (struct List *p,
struct List *a) (

struct Node *t = p->first;
if (t==NULL) {

p->first = q->first;
} else {

while (t->next != NULL)

€ = t->next;
t->next = g->first;

)
q->first = NULL;

int nth_key (struct List *p, int n) {
struct Node *t = p->first;

while (n>0 && t!=NULL) ({n--; t=t->next;}

if (t==NULL) return 6;

else return t->key;

atu

-

Representation vs. abstraction

P\

p
\
|zr'

int £(void) {
struct List *p, *q;
p=new();
q=new() ;
insert (p,6);
insert (p,7);
insert (q,5);
concat (p,q);
concat (q,p); p:l]

4:17,6,51
retumn nth key (@,1); |retum 6

p:[7,6,5]

p:[7,6,5]

No matter which implemertation
is used, the client progam
works “the same.”

(Might be faster with
the smart implementation)

=
Underspecified behavior

&

Operation nth_key(p,n),if p represents o1'i-02
wherethelength of o1 is n, returns i;

otherwise (if thelength of thestringrepresented by p
is <n), it returns an arbitrary integer.

p
Y
=

=S

int nth key (struct List *p, int n) (
struct Node *t = p->first;
while (0 && t!=NULL)

int nth key (struct List *p, int n) {
if (0 <=n & n < p->len)

-

-

This is OK! Client program is not supposed to rely on unspecified
behavior Ifitdoes, then installing a different implementation might cause
\ the clienttobehave differently; in whichcase, toobad for the client.

.

?/

-

ADT modulesin C (wrong!)

list.h

struct List

If you put the
representation here,
then it's not an
ahstract data type,

client.c

#include "list.h" X

#include

int £(void) {
struct List *p, *q;
P = new();

struct Li
p->len=0;
q = new();

insert (p,6);
insert (p,7);
insert (q,5);
concat (p,q)

zeturn p;

void insert
concat (a,p);

return nth_key(q,1); void concat

Ant oth ke

list_array.c

struct List * new(void) (

Pp->data=NULL;

it's just a data type.

(Mny € progammas
progan thiswy bese

- they don’t know any
"list.h" better)

st tp = (struct List *)malloc(sizeof(*p));

(struct List *p, int key) (...}

(struct List *p, *a) { ... }

(stzuct List *p. ipt o) { L .

=
ADT modulesin C (right!) Lo

list.h

struct List;

struct List * new(void);
void insert (struct List *p, int key);
void concat.

int nthkey (struct List *p, int n);

client.c list_array.c

#include "list.h" finclude "list.h"

int £(void) {
struct List *p, *q;

= new();

q = new();

insert (p,6);

insert (p,7);

insert (q,5);

concat (p,q);

concat (a,p)

return nth_key(q,1) ;

ruct List * new(void)
struct List *p = (struct List *)malloc(sizeof(*p)):
p->len=0;

p->data=NULL;

return p;

void insert (struct List *p, int key) (...}

void concat (struct List *p, *a) (...)

int nth_key (struct List *p, int n) { ...

-

~N
ADT modulesin C (altemate implementation) E_g?%é}

list.h

struct List;

struct List * new(void);

void insert (struct List *p, int key);
void concat (struct List *p,

struct List *g);
int

(struct List *p, int n);

client.c

nth key
list_link
TR

struct List
struct List *p, *aq;

P = new();

struct List

ed.c
#include "list.h" "List.h"
3 (i) eervet Tode (Ine Key) struct Wode TRewtily ~

{struct Node *first;};

* new(void) {

a = new() struct List +p = (struct List *)malloc(sizeof (p));
ot po>firsteNULL;
insert return p:
insert }
Corrts A y
concat v .z YT
return nth_key(a,1];
void concat (struct List *p, *q) { ... }
F ST (o BGE 9, LG) [oee 18

*3/5/17

s N
What happens compiling client.c W
| list.h

=
enforcement

Jlohn Reynolds)
The moral ofthis fable is that:

struct List;
struct List * new(void); struct List * new(woid);
void insert (struct List *p, int key); J

void insert (struct List *p, int key);

Type stwucture is a syntactic discipline for enforcing levels of abstraction.

void concat (struct List *p, void concat (struct List *p,
struct List *q); struct List *q);
int nthkey (struct List *p, int n); int nth key (struct List *p, int n);

int f(void) {

client.c et ever does any of:
i
#include "list.h" insert p->field

insert

insert sizeof (struct List)
concat.
concat (q,p) ;

return nth_key(q,1):

}

int £(woid) {
struct List *p, *q;
P = new();
q = new();
insert (p,6
insert (p

sizeof (+p)

insert (q
concat (p
concat (q,p)

return nth_key(q,1);

listh

int key);

Putting struct List; heX‘E,instea:lof struct List {fields...};

enforces the abstractian: it preventsclient.cfrom accessing the fieldsof the struct.

2

=
discipline %

Jlohn Reynolds]

‘The moral of this fable is that
Type structure is a syntactic discipline for enforcing levels of abstraction

client.c

#include "1i

Arranging your ADTsand theirclients in.c fileslike this, with the interface in . files,
is a discipline of programming, to enforce levels ofabstraction,
thatyoushoulduse inC programming

=
Cheatin’ client

[Tisth

struct List;

struct List * new(void);
void insert (struct List *p, int key);
void concat (struct List *p,

struct List *g);
int nthkey (struct List *p, int n);

client.c

#include "list.h" c:‘}
(touct List {int len; int *data}; —}

int f(void) {
struct List *p, *q;
P = new();
if (p->len > 0)
return p->data[0];
else return

Acoupleof slides ago, I wrote,

“Putting struct List; inlisth instead
of struct List {fields...};
enforces theabstraction: it prevents client.c
from accessing thefields of thestruct.”

Well, theenforcer has its limits. A
boneheaded client can always find its way
around theenforcement. That leads to
brittle, buggy programs!

=
Finishing up the module interface &

o

struct List;

struct List * new(void);

void insert (struct List *p, int key);

void concat (struct List
struct List *g);

int nthkey (struct List *p, int n);

What's missing?
Well, that depends on your top-down program design.
What does the client need? (Can't tel;1 haven't shown youtheclient)

But probably you’ll want a way to free a List:

void free_ list(struct 1list *p);

=
freeing a List

void

struct Node (int key; struct Node *mext;};
struct List ({struct Node *first;};

struct node *u, *t = p>first;
free (p);
while (t!=NULL) {

free list(struct list *p) {

ta Uy
| 6 |
L1

*3/5/17

*3/5/17

e N
Module Design Principles g

-

We propose 7 module design principles

And illustrate them with 4 examples
« List, string, stdio, SymTable

Continued in next lecture . . .

