C O m p U t e I‘ S C 1 e n C e ROBERT SEDGEWICK | KEVIN WAYNE

4.1 PERFORMANCE

» empirical analysis

COMPUTER
 SCIENCE

An Interdisciplinary Approach

ROBERT SEDGEWICK
KEVIN WAYNE

http://introcs.cs.princeton.edu

http://intros.cs.princeton.edu

Performance

Goal. Estimate running time (or memory) as a function of input size n.

Q. Aren’t computers fast enough that it doesn’t matter.

A. No. Program could take 1 second or 50 years. You need to know which.

Empirical vs. mathematical analysis

Empirical analysis.
- Execute program to perform experiments.
- Formulate a hypotheses for running time.

- Model enables us to make predictions.

Mathematical analysis.
- Analyze code to count core operations.

« Simplify by discarding lower-order terms.

- Model enables us to explain behavior.

14+24+ ... +n

4.1 PERFORMANCE

» empirical analysis

COMPUTER
SCIENCE

; AI’rd p| yApp ch

http://introcs.cs.princeton.edu

http://intros.cs.princeton.edu

Empirical analysis

Run the program for various input sizes and measure running time.

% B

Empirical analysis

Measurements. Run the program for various input sizes and measure running time.

250 0
500 0
1,000 0.1
2,000 0.8
4,000 6.4
8,000 51.1
16,000 ?

1 on a 2.8GHz Intel PU-126 with 64GB DDR E3 memory and 32MB L3 cache;
running Open)JDK 1.8.0_71-b15 on Springdale Linux v. 7.2

Tip. To get cleaner data, use -Xint option: java-introcs -Xint MyProgram.

Data analysis

Approach 1. Plot running time T'(n) vs. input size n.

fime

512T

256T

128T
64T

size — 1K 2K 4K 8K

Standard plot

Data analysis

Approach 1. If running time obeys power law 7(n) = a n?, use log-log plot.

fime

:

1024T

512T

64T
slope

/

T(n) =097 x 10 -10 x n 2999 seconds

8T
4T

2T

I I I I
size — 1K 2K 4K 8K

Log—log plot

Doubling hypothesis

Approach 2. Run program, doubling the size of the input.

250 — —

0.003
500 0.015 5.0 2.3
1,000 0.10 6.7 2.7
2,000 0.77 7.7 2.9
4,000 6.14 8.0 3.0
8,000 49.1 8.0 3.0 < log2 (49.1 / 6.14) =3.0

-

seems 1o converge to a constant b =3

49.1 /6.14 =8.0

Hypothesis. Running time is approximately 7(n) = a n? with b = log (ratio).

Doubling hypothesis

Q. Why does log; (ratio) give the exponent b ?

A. Assuming, T(n) = an’

T(n) an?
B 2%an?
- anb
— 9b

T (2

I'(n)

10

Doubling hypothesis

Approach 2. Run program, doubling the size of the input.

Q. How to estimate a (assuming we know b) ?

A. Run the program (for a sufficient large value of n) and solve for a.

8,000 49.1

49.1 = a x 8,000°
8,000 49

= a = 0.96 x 10 -10
8,000 49.1

Hypothesis. Running time is about 0.96 x 10 -19 x n3 seconds.

11

Performance quiz 1

Estimate the running time to solve a problem of size n=96,000.

0.02

B. 52 seconds 1.000
C. 117 seconds 2,000
D. 350 seconds 4,000
8,000
16,000
32,000

7(32,000) = 13 seconds

0.05

0.20

0.81

3.25

13.01

4.0

4.1

4.0

4.0

T(n) = a n? seconds

T(3n) = a(3n)?

0 a n?

9 T(n) seconds

QuizSocket.com

soc

12

4.1 PERFORMANCE

» mathematical analysis

COMPUTER
SCIENCE

~ An Interdis p| yApp ch

ROBERT SEDGEWICK
KEVIN WAYNE

http://introcs.cs.princeton.edu

http://intros.cs.princeton.edu

Mathematical notations

Tilde notation. Simplify functions by ignoring lower-order terms.

Order-of-growth notation. Simplify functions by ignoring

both lower-order terms and coefficient of leading term.

. function tilde notation order of growth
coefficient of

leading term \

10 n3+ 50n? + 13 ~ 10 n3 n3
|OW€I‘-OFC|€I’A2 + 6n+72 ~ 15 n? n?

terms
Ynmn+1) ~ 15 n? n?

(4n? + 26n) - (3n? + 612 + logsz n) ~ 12 n? n*

Performance quiz 2

Which is the order of growth of the function 1+2+3+ ... +n ?

A. 1
B. =
C. nlogn
n
D. n?

® 6 6 & O

® 6 6 O O
® 6 O O O

n+ 1

® O O O O
O O O O O

15

Constant order of growth

Number of machine instruction (e.g., TOY instructions) is a constant.

1nt sum = a + b;

1nt product
1nt quotient

1nt Xor
double root
double power
double sine
double Tlog

i
DI) I o}
> N

Mat
Mat
Mat
Mat

—_— e))

sqrt(x);
.pow(x, 0.5);
.S1n(X);

.1og(x) ;

variable declaration;
integer addition;
and assignment

constant number of
constant-time operations
IS constant time

constants for some operations
are much larger than for others
(and machine dependent)

Bottom line. Most primitive operations in Java take constant time.

16

Linear order of growth

Number of machine instruction is proportional to x.

double sum
for (int 1

= 0.0;
= 0; 1 < n; 1++)

sum += x[1] * y[i];

1nt[] a = new 1nt[n];

int n = sS.
String t

String u

ength(Q);

s.substring(0, n-1)
S + ll\nll ;
_

) —

prototypical linear-time loop

implicit linear-time loop

substring extraction and string
concatenation take time linear
in the length of resulting string

Caveat. Non-primitive operations can take more than constant time.

17

Quadratic order of growth

Number of machine instruction is proportional »2.

1nt count = O;
for (int 1 =0; 1 < n; 1++)

for (int] =0; J < n; J++) «——— prototypical quadratic-time loop
it (a[1] == b[JD)
count++;
String s = "",;
int n = a.length;
for (int i = 0: i < n; i++) - performance gotcha:

CS += ali]:) ot constant timel abusive string concatenation
) .

18

Logarithmic order of growth

Number of machine instruction is proportional to log: n.

1
for (int 1 = 1; 1 <= n; 1 = 1%2) { 2
count++; 4
¥ 8 > logx n
16
n o/

Note. We use the notation log n with order of growth (because the base is irrelevant).
* Binary logarithm: Ig n =1log> n.

* Natural logarithm: In n =log, n.

Logarithmic order of growth

Number of machine instruction is proportional to log: n.

(O

http:/ /www.20q.net

Note. Generalizes TwentyQuestions.java from book.

20

Performance quiz 3

Which is the order of growth of the following code fragment?

A. n?

B. n2logn for (int i = 0; i < n; i++)

C. n3 for (Aint J =0; J < n; J++)

D. n3logn for (int k = 1; k <= n; k = k¥*2)
count++;

n X n X logn

21

Performance quiz 4

Which is the order of growth of the following code fragment?

A. n?
B. n?
C. n>
D. n’7

1 + n?

+ n’

+ n?

1nt count = 0;

for (Aint 1 = 0; 1 < n; 1++)
for (int j = 0; j < n; j++)
count++;:

for (int 1 = 0; 1 < n; 1++)
for (Aint J =0; J < n; J++)
for (Aint k = 0; k < n; k++)
count++;

for (Aant 1 =0; 1 <n; 1++)
for (int j = 0; j < n; j++)
count++;

22

