
Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/4/17 11:31 AM

4.1 PERFORMANCE

‣ empirical analysis

‣ mathematical analysis

Kevin Wayne

http://introcs.cs.princeton.edu

http://intros.cs.princeton.edu

Performance

Goal. Estimate running time (or memory) as a function of input size n.

 
Q. Aren’t computers fast enough that it doesn’t matter.

A. No. Program could take 1 second or 50 years. You need to know which.

2

Empirical vs. mathematical analysis

Empirical analysis.

・Execute program to perform experiments.

・Formulate a hypotheses for running time.

・Model enables us to make predictions.

 
 
Mathematical analysis.

・Analyze code to count core operations.

・Simplify by discarding lower-order terms.

・Model enables us to explain behavior.

3

1 + 2 + . . . + n = 1
2n(n + 1)

� 1
2n2

1 + 2 + . . . + n = 1
2n(n + 1)

� 1
2n2

http://introcs.cs.princeton.edu

4.1 PERFORMANCE

‣ empirical analysis

‣ mathematical analysis

http://intros.cs.princeton.edu

Empirical analysis

Run the program for various input sizes and measure running time.

5

Empirical analysis

Measurements. Run the program for various input sizes and measure running time.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tip. To get cleaner data, use -Xint option: java-introcs -Xint MyProgram.

6

n time (seconds) †

250 0

500 0

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

16,000 ?

† on a 2.8GHz Intel PU-126 with 64GB DDR E3 memory and 32MB L3 cache; 
 running OpenJDK 1.8.0_71-b15 on Springdale Linux v. 7.2

Data analysis

Approach 1. Plot running time T (n) vs. input size n.

7

1K

64T

128T

256T

512T

Standard plot

size 2K 4K 8K

time

Data analysis

Approach 1. If running time obeys power law T(n) = a n b, use log–log plot.

8

slope

T(n) = 0.97 × 10 –10 × n 2.999 seconds

Log–log plot

1K

T

2T

4T

8T

64T

512T

1024T

size 2K 4K 8K

time

Doubling hypothesis

Approach 2. Run program, doubling the size of the input.

 

 
 
Hypothesis. Running time is approximately T(n) = a n b with b = log2 (ratio).

9

n time (seconds) † ratio log2 (ratio)

250 0.003 – –

500 0.015 5.0 2.3

1,000 0.10 6.7 2.7

2,000 0.77 7.7 2.9

4,000 6.14 8.0 3.0

8,000 49.1 8.0 3.0

seems to converge to a constant b ≈ 3

log2 (49.1 / 6.14) = 3.0

49.1 / 6.14 = 8.0

Doubling hypothesis

Q. Why does log2 (ratio) give the exponent b ?

 
A. Assuming,

10

T (2n)

T (n)
=

a(2n)b

anb

=
2banb

anb

= 2b

=� log2
T (2n)

T (n)
= b

T (2n)

T (n)
=

a(2n)b

anb

=
2banb

anb

= 2b

T (2n)

T (n)
=

a(2n)b

anb

=
2banb

anb

= 2b

T (2n)

T (n)
=

a(2n)b

anb

=
2banb

anb

= 2b

T (n) = anb

Doubling hypothesis

Approach 2. Run program, doubling the size of the input.

 
Q. How to estimate a (assuming we know b) ?

A. Run the program (for a sufficient large value of n) and solve for a.

 
 
 
 
 
 
 
 
 
Hypothesis. Running time is about 0.96 × 10 –10 × n3 seconds.

11

n time (seconds) †

8,000 49.1

8,000 49

8,000 49.1

49.1 = a × 8,0003

⇒ a = 0.96 × 10 –10

Performance quiz 1

Estimate the running time to solve a problem of size n = 96,000.

A. 39 seconds

B. 52 seconds

C. 117 seconds

D. 350 seconds

12

n time (seconds) † ratio

1,000 0.02 –

2,000 0.05 2.5

4,000 0.20 4.0

8,000 0.81 4.1

16,000 3.25 4.0

32,000 13.01 4.0

T(n) = a n2 seconds

T(3n) = a (3n)2

 = 9 a n2

 = 9 T(n) seconds

T(32,000) = 13 seconds

QuizSocket.com

http://introcs.cs.princeton.edu

4.1 PERFORMANCE

‣ empirical analysis

‣ mathematical analysis

http://intros.cs.princeton.edu

Mathematical notations

Tilde notation. Simplify functions by ignoring lower-order terms.

 
Order-of-growth notation. Simplify functions by ignoring 
both lower-order terms and coefficient of leading term.

14

function tilde notation order of growth

10 n3 + 50 n2 + 13 ~ 10 n3 n3

½ n2 + 6n + 72 ~ ½ n2 n2

½ n (n + 1) ~ ½ n2 n2

(4n2 + 26n) ⋅ (3n2 + 6n3/2 + log2 n) ~ 12 n4 n4

coefficient of
leading term

lower-order
terms

Performance quiz 2

Which is the order of growth of the function 1 + 2 + 3 + … + n ?

A. 1

B. n

C. n log n

D. n2

15

n

n + 1

Constant order of growth

Number of machine instruction (e.g., TOY instructions) is a constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bottom line. Most primitive operations in Java take constant time.

16

int sum = a + b;
variable declaration;
integer addition;
and assignment

int product = a * b;
int quotient = a / b;
int xor = a ^ b;

constant number of
constant-time operations
is constant time

double root = Math.sqrt(x);
double power = Math.pow(x, 0.5);
double sine = Math.sin(x);
double log = Math.log(x);

constants for some operations
are much larger than for others
(and machine dependent)

Linear order of growth

Number of machine instruction is proportional to n.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Caveat. Non-primitive operations can take more than constant time.

17

int n = s.length();
String t = s.substring(0, n-1);
String u = s + "\n";

double sum = 0.0;
for (int i = 0; i < n; i++)
 sum += x[i] * y[i];

prototypical linear-time loop

int[] a = new int[n]; implicit linear-time loop

substring extraction and string
concatenation take time linear
in the length of resulting string

Quadratic order of growth

Number of machine instruction is proportional n2.

18

String s = "";
int n = a.length;
for (int i = 0; i < n; i++)
 s += a[i];

performance gotcha: 
abusive string concatenation

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 if (a[i] == b[j])
 count++;

prototypical quadratic-time loop

not constant time!

Logarithmic order of growth

Number of machine instruction is proportional to log2 n.

 
 
 
 
 
 
 
 
 
 
Note. We use the notation log n with order of growth (because the base is irrelevant).

・Binary logarithm: lg n = log2 n.

・Natural logarithm: ln n = loge n.

19

for (int i = 1; i <= n; i = i*2) {
 count++;
}

1
2

4
8

16
⋮

n

log2 n

Logarithmic order of growth

Number of machine instruction is proportional to log2 n.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note. Generalizes TwentyQuestions.java from book.

20

http://www.20q.net

Performance quiz 3

Which is the order of growth of the following code fragment?

A. n 2

B. n 2 log n

C. n 3

D. n 3 log n

21

for (int i = 0; i < n; i++)

 for (int j = 0; j < n; j++)

 for (int k = 1; k <= n; k = k*2) 
 count++;

⨉ nn ⨉ log n

Performance quiz 4

Which is the order of growth of the following code fragment?

A. n 2

B. n 3

C. n 5

D. n 7

22

int count = 0;

for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 count++;

for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 for (int k = 0; k < n; k++)
 count++;

for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 count++;

+ n2 + n3 + n21

