Computer Science

ROBERT SEDGEWICK | KEVIN WAYNE

4.1 PERFORMANCE

empirical analysis

mathematical analysis

Last updated on 4/4/17 11:31 AM

Goal. Estimate running time (or memory) as a function of input size *n*.

Q. Aren't computers fast enough that it doesn't matter. A. No. Program could take 1 second or 50 years. You need to know which.

Empirical analysis.

- Execute program to perform experiments.
- Formulate a hypotheses for running time.
- Model enables us to make predictions.

Mathematical analysis.

- Analyze code to count core operations. 1 + 2 + 2
- Simplify by discarding lower-order terms.
- Model enables us to explain behavior.

$$+ \ldots + n = \frac{1}{2}n(n+1)$$
$$\sim \frac{1}{2}n^2$$

COMPUTER SCIENCE

An Interdisciplinary Approach

ROBERT SEDGEWICK KEVIN WAYNE

http://introcs.cs.princeton.edu

4.1 PERFORMANCE

empirical analysis

mathematical analysis

Empirical analysis

Run the program for various input sizes and measure running time.

Measurements. Run the program for various input sizes and measure running time.

n	time (sec
250	C
500	C
1,000	0.
2,000	0.
4,000	6.
8,000	51
16,000	?

† on a 2.8GHz Intel PU-126 with 64GB DDR E3 memory and 32MB L3 cache; running OpenJDK 1.8.0_71-b15 on Springdale Linux v. 7.2

Tip. To get cleaner data, use -Xint option: java-introcs -Xint MyProgram.

Data analysis

Approach 1. Plot running time T(n) vs. input size n. time 512T -256T – 128T -64T size \rightarrow 4K 1K 2K 8K Standard plot

Data analysis

Approach 1. If running time obeys power law $T(n) = a n^{b}$, use log-log plot.

Approach 2. Run program, doubling the size of the input.

n	time (seconds) †	ratio	log ₂ (
250	0.003		_
500	0.015	5.0	2.
1,000	0.10	6.7	2.
2,000	0.77	7.7	2.
4,000	6.14	8.0	3.
8,000	49.1	8.0	3.
	49.1 / 6.14 = 8.0		

Hypothesis. Running time is approximately $T(n) = a n^b$ with $b = \log_2$ (ratio).

Doubling hypothesis

- **Q.** Why does \log_2 (ratio) give the exponent *b*?
- A. Assuming, $T(n) = an^b$

$$\frac{T(2n)}{T(n)} = \frac{a(2n)^b}{an^b}$$
$$= \frac{2^b an^b}{an^b}$$

$$= 2^{b}$$

$$\implies \log_2 \frac{T(2n)}{T(n)} = b$$

Approach 2. Run program, doubling the size of the input.

- **Q.** How to estimate *a* (assuming we know *b*)?
- A. Run the program (for a sufficient large value of *n*) and solve for *a*.

n	time (seconds) †
8,000	49.1
8,000	49
8,000	49.1

Hypothesis. Running time is about $0.96 \times 10^{-10} \times n^3$ seconds.

8,0003

 96×10^{-10}

Estimate the running time to solve a problem of size n = 96,000.

Α.	39 seconds	n	time (seconds) †	ratio
B.	52 seconds	1,000	0.02	_
С.	117 seconds	2,000	0.05	2.5
D.	350 seconds	4,000	0.20	4.0
		8,000	0.81	4.1
		16,000	3.25	4.0
		32,000	13.01	4.0

T(32,000) = 13 seconds	T(3n) = a
	= 9

QuizSocket.com

4XFNCV

 $T(n) = a n^2$ seconds

 $a(3n)^2$

 $\partial a n^2$

= 9 T(n) seconds

Join Quiz

COMPUTER SCIENCE

An Interdisciplinary Approach

ROBERT SEDGEWICK KEVIN WAYNE

http://introcs.cs.princeton.edu

4.1 PERFORMANCE

mathematical analysis

empirical analysis

Tilde notation. Simplify functions by ignoring lower-order terms.

Order-of-growth notation. Simplify functions by ignoring both lower-order terms and coefficient of leading term.

tilde notation	order of growth
~ 10 <i>n</i> ³	<i>n</i> ³
~ $\frac{1}{2} n^2$	n^2
~ $\frac{1}{2} n^2$	n^2
~ 12 <i>n</i> ⁴	n^4

Performance quiz 2

Which is the order of growth of the function 1 + 2 + 3 + ... + n?

- A. 1
 B. *n*C. *n* log *n*
- **D.** n^2

Number of machine instruction (e.g., TOY instructions) is a constant.

int sum = a + b;

int	product	=	а	*	b;
int	quotient	=	a	/	b;
int	xor	=	a	٨	b;

double root = Math.sqrt(x); double power = Math.pow(x, 0.5); double sine = Math.sin(x); double log = Math.log(x);

Bottom line. Most primitive operations in Java take constant time.

variable declaration; integer addition; and assignment

constant number of constant-time operations is constant time

constants for some operations are much larger than for others (and machine dependent)

Number of machine instruction is proportional to *n*.

```
double sum = 0.0;
for (int i = 0; i < n; i++)
    sum += x[i] * y[i];
```

int[] a = new int[n];

int n = s.length();
String t = s.substring(0, n-1);
String u = s + "\n";

Caveat. Non-primitive operations can take more than constant time.

— prototypical linear-time loop

— implicit linear-time loop

substring extraction and string concatenation take time linear in the length of resulting string

Quadratic order of growth

Number of machine instruction is proportional n^2 .

```
int count = 0;
for (int i = 0; i < n; i++)
  for (int j = 0; j < n; j++)
      if (a[i] == b[j])
      count++;
```

prototypical quadratic-time loop

performance gotcha: abusive string concatenation

Logarithmic order of growth

Number of machine instruction is proportional to $\log_2 n$.

```
for (int i = 1; i <= n; i = i*2) {
    count++;
}</pre>
```

Note. We use the notation log *n* with order of growth (because the base is irrelevant).

- Binary logarithm: $\lg n = \log_2 n$.
- Natural logarithm: $\ln n = \log_e n$.

Logarithmic order of growth

Number of machine instruction is proportional to $\log_2 n$.

http://www.20q.net

Note. Generalizes TwentyQuestions.java from book.

Which is the order of growth of the following code fragment?

 $n \times n \times \log n$

Performance quiz 4

Which is the order of growth of the following code fragment?

int count = 0;

for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) count++;

for (int i = 0; i < n; i++) for (int j = 0; j < n; j++)</pre> count++;