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Performance

Goal. Estimate running time (or memory) as a function of input size n.

Q. Aren’t computers fast enough that it doesn’t matter.

A. No. Program could take 1 second or 50 years. You need to know which.




Empirical vs. mathematical analysis

Empirical analysis.
- Execute program to perform experiments.
- Formulate a hypotheses for running time.

- Model enables us to make predictions.

Mathematical analysis.
- Analyze code to count core operations.

« Simplify by discarding lower-order terms.

- Model enables us to explain behavior.

14+24+ ... +n
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Empirical analysis

Run the program for various input sizes and measure running time.
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Empirical analysis

Measurements. Run the program for various input sizes and measure running time.

250 0
500 0
1,000 0.1
2,000 0.8
4,000 6.4
8,000 51.1
16,000 ?

1 on a 2.8GHz Intel PU-126 with 64GB DDR E3 memory and 32MB L3 cache;
running Open)JDK 1.8.0_71-b15 on Springdale Linux v. 7.2

Tip. To get cleaner data, use -Xint option: java-introcs -Xint MyProgram.



Data analysis

Approach 1. Plot running time T'(n) vs. input size n.
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Data analysis

Approach 1. If running time obeys power law 7(n) = a n?, use log-log plot.

fime
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T(n) =097 x 10 -10 x n 2999 seconds
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Doubling hypothesis

Approach 2. Run program, doubling the size of the input.

250 — —

0.003
500 0.015 5.0 2.3
1,000 0.10 6.7 2.7
2,000 0.77 7.7 2.9
4,000 6.14 8.0 3.0
8,000 49.1 8.0 3.0 < log2 (49.1 / 6.14) =3.0

-

seems 1o converge to a constant b =3

49.1 /6.14 =8.0

Hypothesis. Running time is approximately 7(n) = a n? with b = log (ratio).



Doubling hypothesis

Q. Why does log; (ratio) give the exponent b ?

A. Assuming, T(n) = an’

T(n) an?
B 2%an?
- anb
— 9b

T (2

I'(n)
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Doubling hypothesis

Approach 2. Run program, doubling the size of the input.

Q. How to estimate a (assuming we know b) ?

A. Run the program (for a sufficient large value of n) and solve for a.

8,000 49.1

49.1 = a x 8,000°
8,000 49

= a = 0.96 x 10 -10
8,000 49.1

Hypothesis. Running time is about 0.96 x 10 -19 x n3 seconds.
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Performance quiz 1

Estimate the running time to solve a problem of size n=96,000.

0.02

B. 52 seconds 1.000
C. 117 seconds 2,000
D. 350 seconds 4,000
8,000
16,000
32,000

7(32,000) = 13 seconds

0.05

0.20

0.81

3.25

13.01

4.0

4.1

4.0

4.0

T(n) = a n? seconds

T(3n) = a(3n)?

0 a n?

9 T(n) seconds

QuizSocket.com

soc
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Mathematical notations

Tilde notation. Simplify functions by ignoring lower-order terms.

Order-of-growth notation. Simplify functions by ignoring

both lower-order terms and coefficient of leading term.

. function tilde notation order of growth
coefficient of

leading term \

10 n3+ 50n? + 13 ~ 10 n3 n3
|OW€I‘-OFC|€I’A2 + 6n+72 ~ 15 n? n?

terms
Ynmn+1) ~ 15 n? n?

(4n? + 26n) - (3n? + 612 + logsz n) ~ 12 n? n*



Performance quiz 2

Which is the order of growth of the function 1+2+3+ ... +n ?

A. 1
B. =
C. nlogn
n
D. n?

® 6 6 & O

® 6 6 O O
® 6 O O O

n+ 1

® O O O O
O O O O O
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Constant order of growth

Number of machine instruction (e.g., TOY instructions) is a constant.

1nt sum = a + b;

1nt product
1nt quotient

1nt Xor
double root
double power
double sine
double Tlog

i
DI ) I o}
> N

Mat
Mat
Mat
Mat

—_— e ) )

sqrt(x);
.pow(x, 0.5);
.S1n(X);

.1og(x) ;

variable declaration;
integer addition;
and assignment

constant number of
constant-time operations
IS constant time

constants for some operations
are much larger than for others
(and machine dependent)

Bottom line. Most primitive operations in Java take constant time.
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Linear order of growth

Number of machine instruction is proportional to x.

double sum
for (int 1

= 0.0;
= 0; 1 < n; 1++)

sum += x[1] * y[i];

1nt[] a = new 1nt[n];

int n = sS.
String t

String u

ength(Q);

s.substring(0, n-1)
S + ll\nll ;
\_

) —

prototypical linear-time loop

implicit linear-time loop

substring extraction and string
concatenation take time linear
in the length of resulting string

Caveat. Non-primitive operations can take more than constant time.
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Quadratic order of growth

Number of machine instruction is proportional »2.

1nt count = O;
for (int 1 =0; 1 < n; 1++)

for (int ] =0; J < n; J++) «——— prototypical quadratic-time loop
it (a[1] == b[JD)
count++;
String s = "",;
int n = a.length;
for (int i = 0: i < n; i++) - performance gotcha:

CS += ali]: ) ot constant timel abusive string concatenation
) .
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Logarithmic order of growth

Number of machine instruction is proportional to log: n.

1
for (int 1 = 1; 1 <= n; 1 = 1%2) { 2
count++; 4
¥ 8 > logx n
16
n o/

Note. We use the notation log n with order of growth (because the base is irrelevant).
* Binary logarithm: Ig n =1log> n.

* Natural logarithm: In n =log, n.



Logarithmic order of growth

Number of machine instruction is proportional to log: n.

(O

http:/ /www.20q.net

Note. Generalizes TwentyQuestions.java from book.
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Performance quiz 3

Which is the order of growth of the following code fragment?

A. n?

B. n2logn for (int i = 0; i < n; i++)

C. n3 for (Aint J =0; J < n; J++)

D. n3logn for (int k = 1; k <= n; k = k¥*2)
count++;

n X n X logn
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Performance quiz 4

Which is the order of growth of the following code fragment?

A. n?
B. n?
C. n>
D. n’7

1 + n?

+ n’

+ n?

1nt count = 0;

for (Aint 1 = 0; 1 < n; 1++)
for (int j = 0; j < n; j++)
count++;:

for (int 1 = 0; 1 < n; 1++)
for (Aint J =0; J < n; J++)
for (Aint k = 0; k < n; k++)
count++;

for (Aant 1 =0; 1 <n; 1++)
for (int j = 0; j < n; j++)
count++;
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