
Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/13/17 1:25 PM

ASSIGNMENT 7 TIPS AND TRICKS

‣ Markov chains

‣ overview of assignment

‣ Markov model data type

‣ text generator client

Kevin Wayne

http://princeton.edu/~cos126

http://princeton.edu/~cos126

Goals

Markov chains.

Use symbol tables.

Natural language processing.

2

GA AG

GC

CG 4/5

AA

2/5

3/5

1/3

1

1/3

1/3

1/5

1/21

GG

1/2

86

553

34 50

44

67

ASSIGNMENT 7 TIPS AND TRICKS

‣ Markov chains

‣ overview of assignment

‣ Markov model data type

‣ text generator client

http://princeton.edu/~cos126

Markov chains

Warmup: gambler’s ruin.

Gambler starts with $3.

Gambler makes fair $1 bets (either wins or loses $1) until goes broke or reaches $4.

State i = currently has $i.
 
 
 
 
 
 
 
 
 
 
 
Memoryless property. Future depends only on current state.

4

a 5-state Markov chain

⇥

⇥

⇥

⇥

30 1 2 4

⇥

⇥1

1

Applications

Science and engineering.

Bioinformatics: gene prediction.

Information theory: error correction.

Chemistry: Michaelis–Menten kinetics.

Operations research: queueing theory.

Web search: Google’s PageRank algorithm.

Scientific computing: Markov chain Monte Carlo.

 
Natural language processing.

Text prediction.

Text generation.

Speech synthesis.

Video captioning.

Speech recognition.

Parts of speech tagging.

Handwriting recognition.

5

see ORF 309

see Section 1.6

this assignment

ASSIGNMENT 7 TIPS AND TRICKS

‣ Markov chains

‣ overview of assignment

‣ Markov model data type

‣ text generator client

http://princeton.edu/~cos126

Claude Shannon. Proposed a mathematical theory of communication in a landmark 1948 paper. 
 
 
 
 
 
 
 
 
 
 

Original motivation. Optimally design telephone networks for Bell Labs.

Byproduct. Model natural language as a Markov chain; use to generate pseudo-random text.

Historical context

7

Reprinted with corrections from The Bell System Technical Journal,
Vol. 27, pp. 379–423, 623–656, July, October, 1948.

A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM and PPM which exchange
bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A

basis for such a theory is contained in the important papers of Nyquist1 and Hartley2 on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages havemeaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is one selected from a set of possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number
can be regarded as a measure of the information produced when one message is chosen from the set, all
choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic
function. Although this definition must be generalized considerably when we consider the influence of the
statistics of the message and when we have a continuous range of messages, we will in all cases use an
essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance such as time, bandwidth, number
of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For example,
adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the base 2
logarithm of this number. Doubling the time roughly squares the number of possible messages, or
doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is closely related to (1) since we in-
tuitively measures entities by linear comparison with common standards. One feels, for example, that
two punched cards should have twice the capacity of one for information storage, and two identical
channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations are simple in terms of the loga-
rithm but would require clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for measuring information. If the
base 2 is used the resulting units may be called binary digits, or more briefly bits, a word suggested by
J. W. Tukey. A device with two stable positions, such as a relay or a flip-flop circuit, can store one bit of
information. N such devices can storeN bits, since the total number of possible states is 2N and log2 2N N.
If the base 10 is used the units may be called decimal digits. Since

log2M log10M log10 2
3 32log10M

1Nyquist, H., “Certain Factors Affecting Telegraph Speed,” Bell System Technical Journal, April 1924, p. 324; “Certain Topics in
Telegraph Transmission Theory,” A.I.E.E. Trans., v. 47, April 1928, p. 617.

2Hartley, R. V. L., “Transmission of Information,” Bell System Technical Journal, July 1928, p. 535.

1

Random letters

Attempt �1. Generate letters uniformly at random.

8

ghesfccayzrwyucmfbnxaywjsywebtcdmixcppczndyfttbggshattdcbwngnrrhpobplnxco

ocauxtbqrxgqskudczpkdfjccmugrwdhhhytxpwbptwmcevpfoctinlvwimasomanhogpugoa

dbjekwkdmuuytwgtnxxegvfgvkqwrqiytcgpqxlafohrmhqsnkcamjdkzbervqplnovasarji

xtqkoxlsibfdihbcmnqblrmprijhxhttzzmtiqspznjxklgqdfxdfltfcnnuywnfxpuujnbno

jrnogokpckeymovcggcrhsgmeoapwmktnskpqagirpquokmpjpxwqxjcljclmejloxznrmnxj

ayyjvouvvkkgjkvgizriqogcwvbqywswpiebskxfkkhbovgtrhaaewgcteprmrteynbrhvlbf

evfmafxlybsqlwfxaijtmhlfiicarmrvinburldxvudasyjuosyfdijraqaljdztwobesxhen

lxilhaesesssauokgjymvvrfyethtuwrnrhqhttchynfyxebuagwutidwnzsoyopedlncjdlp

zrjlfrcfiduueuhbgmrvwwpkcnxuuoyoqxvrlvcqhoknqyxkqntqsrftbaandabjysiiazzye

aoxahqnsfaiwftgfzxjcbeqyekievbtsbhzcibzgjqrcgtqbbtv...

Markov model of order 0

Attempt 0. Generate letters at random, according to distribution of letters in English text.

9

a b c d e f g h i j k l m n o p q r s t u v w x y z

Markov model of order 0

Attempt 0. Generate letters at random, according to distribution of letters in English text.

10

adeio rtpa ooeds sgsagt oioiietneeynptiao nevueshr oitn urrtrynyi

soiebnhpaiceitemec rwests sdneubt i bntdpt eldlidfaur ctr

ttotnmsefeotvot e ep hdysoe nedueet adsrofrrtvnossddelrooo erraoen

aitpeneiusryvon aegeaee nba ulaetlanrrt a sepv d mies ecerrrryoepu

ohujapi foht nseeehoer gaedr ao sib oaeeoate gnoen utn cts siu yeih

eulsdiseareacooe md teieesskdeeethua ofthsrsneua lyhhupr em ic gd hs wcb

te cs rt c s eyy d udhwetl alaer cdceregoe ol a alerir ngedhbmp oadftie

bfis c roicce oeia inla o essio eaermniereoii l rt otuoaa noataicc

oeogy hftktl nolt wdivtfc oeemoagdmhsnmro e trt etttu

aioiiaaueicthnatmghtueno cgfuriu scesrn nmoi...

Key idea

If you see the sequence of words I don’t in a piece of English text, which word is most likely to appear next?

11

54861 I don't know

43814 I don't think

18745 I don't want

 9979 I don't have

 5182 I don't see

 4971 I don't like

 4928 I don't believe

 4412 I don't care

 3172 I don't understand

 ⋮

 1 I don't debug

 0 I don't xertz

frequencies of words following "i don’t"

Key idea

If you see the sequence of letters wi in Sorcerer’s Stone, which letter is most likely to appear next?

A. l

B. t

C. x

D. z

12

QuizSocket.com

Markov model of order k

Markov chain. State = k-gram (k consecutive letters).

 
Ex. 2-gram = "wi"

14

487 … w i t …

186 … w i n …

110 … w i l …

 66 … w i z …

 46 … w i c …

 42 … w i s …

 21 … w i g …

 18 … w i d …

 9 … w i p …

 7 … w i f …

 3 … w i m …

1,512-state Markov chain (partial)

wi

izilinit …

487
995

186
995

110
995

66
995

im

3
995

Markov model of order k

Markov chain. State = k-gram (k consecutive letters).

Ex. 4-gram = "umbl"

15

170 … u m b l e …

 8 … u m b l i …

 1 … u m b l y …

34,099-state Markov chain (partial)

umbl

mblymblimble

170
179

8
179

1
179

Markov model of order 1

Attempt 1. Create Markov model of order 1 from Sorcerer’s Stone; generate characters from model.

16

Hagono ane inlline

Diougo'dnde

rd cldear g couthe ors bak."

" w hesou' bo stherm.

monedexarimind ther her? chen h "

"OGrs'd bedis hthisarbethesle theyoutinger, m --burahou inld,

ts co?

"Grred wre us fopthewary ehig

"Wourreyifrome crinved iary ons bo ercad rrd sotooffou UFay'lititshimine

as ol jo co s t, ns rorbo y,

"Whe, whed." fis iostowas rvis be g hapld lyt hecr."I fft hing, kir he

ooroy merou angely wen br Hen, vet t

Markov model of order 2

Attempt 2. Create Markov model of order 2 from Sorcerer’s Stone; generate characters from model.

17

Harry ne.

"Cody whess."

"Moto a ropeon. Yountle!"'Oh," Her same ling useds ond," shopen a sammed

dauseence expe the theriestmardley. "Harght the of beterming anow wink

suck ing the he goneight he was notionder gligh, it and Dumps.. Harry

flon trie shrordid, "Heryou he off for said Harting eavillot

him. "Whant.. At

iter, "The papecreen sithere -- sonew ing ithey fur the yonerry

he

Whaid nould

fixiedors of hersp, warry he like. ank of he kinto told the butecken at

tooll low he aloury all

Markov model of order 8

Attempt 8. Create Markov model of order 8 from Sorcerer’s Stone; generate characters from model.

18

Harry Potter. Let me see." He put the car, and disappeared from

Gringotts," said Harry.

"Oh, this is the Stone. I've got to wait for the last

Quidditch cup for Gryffindor house dormitory door was flung

open and closed his nose on the door quickly around the

door open," said Harry.

"What really looking pub. If Hagrid's return. Malfoy -- one more owl

telling him feel ill, so they couldn't believe it until

Dumbledore's face loomed suddenly found out how good he is at Quidditch

field. Held never exactly as he slid the centaur's hand. "Call him

Norbert was going, he got out a handful of moldy dog biscuits over that

More examples

Ex 1. Kanye West’s VMA speech.

19

 Bro. Bro. Listen to raise a child. People will end up for no reasons why

 I get my stream of composition. I think that it'd play with them.

"I think there's a living celebrity with an artists of context, I'm

going out and fight for a broken planet, the best album. I ain't trying

to put into the American Academy, I'm successful. I'm sure it's somehow

sold a concept that Elon's like 'oh dude, it's a $3000 shirts. For the

America. "In America. "In America people to go back down.

More examples

Ex 2. Adele lyrics.

20

Hello, it's me

I want you

I don't know how I can do without parole

Lord have mercy on my soul

Fire burning everything you got

Someone else

I gotta go

Oh, that you never try

To forgive me first love, but I'm too tired.

I'm bored to step into the flames

When it fell you I'm sorry for everything

They melt my heart,

More examples

Ex 4. My MarkovModel.java.

21

public class MarkovModel {

 // number of character after the kgram

 public static final int ASCII = 128;

 // number of characters in ASCII alphabet

 private final int k;

 // order of Markov model from given text

 private static void main(String[] args) {

 for (char c = text.substring(i, i + k);

 return 0;

ASSIGNMENT 7 TIPS AND TRICKS

‣ Markov chains

‣ overview of assignment

‣ Markov model data type

‣ text generator client

http://princeton.edu/~cos126

most of your code will be here public class MarkovModel

public MarkovModel(String text, int k) create Markov model of order k for text

public int order() order k of Markov model

public String toString() string representation of this Markov model

public int freq(String kgram) number of times k-gram appears in text

public int freq(String kgram, char c) number of times the character c follows  
the k-gram in the text

public char random(String kgram) random character according to model

public static void main(String[] args) unit tests all of the methods in this class

Markov model data type: API

23

One-argument frequency method

Which data structure to store the number of times each k-gram appears?

A. ST<int, String>

B. ST<String, Integer>

C. ST<String, int>

D. ST<Integer, String>

24

see FrequencyCount in precept

can’t use primitive types for either key or value types

k-gram frequency

A A 2

A G 5

C G 1

G A 5

G C 1

G G 3

key value

Frequency counts

Q. How many times does each k-gram appear in the text?

36

k-gram frequency

G A 3

A G 3

G G 3

G C 1

C G 1

text
(k = 2)

G A 4

How to extract k-grams

Q. Which string library method to use to extract k-grams?

37

1050 APIs

Anatomy of a
two-dimensional array

99 85 98
98 57 78
92 77 76
94 32 11
99 34 22
90 46 54
76 59 88
92 66 89
97 71 24
89 29 38

row 1

column 2

a[1][2]

Compile-time initialization of a
of an 11-by-4 double array

double[][] a =
{
 { 99.0, 85.0, 98.0, 0.0 },
 { 98.0, 57.0, 79.0, 0.0 },
 { 92.0, 77.0, 74.0, 0.0 },
 { 94.0, 62.0, 81.0, 0.0 },
 { 99.0, 94.0, 92.0, 0.0 },
 { 80.0, 76.5, 67.0, 0.0 },
 { 76.0, 58.5, 90.5, 0.0 },
 { 92.0, 66.0, 91.0, 0.0 },
 { 97.0, 70.5, 66.5, 0.0 },
 { 89.0, 89.5, 81.0, 0.0 },
 { 0.0, 0.0, 0.0, 0.0 }
};

public class String

String(String s) create a string with the same value as s

String(char[] a) create a string from character array

int length() number of characters

char charAt(int i) the character at index i

String substring(int i, int j) characters at indices i through (j-1)

boolean contains(String substring) does this string contain substring ?

boolean startsWith(String pre) does this string start with pre ?

boolean endsWith(String post) does this string end with post ?

int indexOf(String pattern) index of first occurrence of pattern

int indexOf(String pattern, int i) index of first occurrence of pattern after i

String concat(String t) this string with t appended

int compareTo(String t) string comparison

String toLowerCase() this string, with lowercase letters

String toUpperCase() this string, with uppercase letters

String replaceAll(String a, String b) this string, with as replaced by bs

String[] split(String delimiter) strings between occurrences of delimiter

boolean equals(Object t) is this string’s value the same as t’s ?

int hashCode() an integer hash code

Excerpts from the API for Java’s String data type

cheatsheet.indd 1050 11/15/16 12:41 PM

Two-argument frequency method

Which data structure to store the number of times each character immediately follows each k-gram?

A. ST<String, int[]>

B. ST<String, Integer[]>

C. ST<String, Integer>

D. ST<String, ST<Character, Integer>>

38

frequency of next character

k-gram A C G T

A A 1 0 1 0

A G 3 0 2 0

C G 1 0 0 0

G A 1 0 4 0

G C 0 0 1 0

G G 1 1 1 0

key value

Next-character counts

Q. For each k-gram that appears in the text, how many times does each character immediately follow it?

52

text
(k = 2)

frequency of next character

k-gram frequency A C G T

G A 3 0 0 3 0

A G 3 1 0 2 0

G G 3 1 1 1 0

G C 1 0 0 1 0

C G 1 0 0 1 0

G A 4 0 0 4 0

Character-indexed arrays

Q. For a given k-gram, how to store number of times each character immediately follows it?

A. Assuming ASCII alphabet, use array of length 128 (indexed by character).

 
 
 
 
 
 
 
 
 
Q. How to update one of the counts?

53

'A' 'B' 'C' D' 'E' 'F' 'G'

0 1 2 ... 65 66 67 68 69 70 71 ... 127

0 0 0 0 1 0 0 0 0 0 4 0 0

can use char as
index into array

int[] freq
5

char c = 'G';
freq[c]++;

Generating pseudo-random characters

Step 1. Given a k-gram, determine number of times each character follows that k-gram. How?

Step 2. Given an array of frequencies, pick a random index with probability proportional to its frequency.

54

int[] freq = { 1, 0, 4, 0 };
while (true) {
 int r = StdRandom.discrete(freq);
 StdOut.println(r);
}

k-gram A C G T

A A 1 0 1 0

A G 3 0 2 0

C G 1 0 0 0

G A 1 0 4 0

G C 0 0 1 0

G G 1 1 1 0

key value

Getting stuck

Fix. Treat string as if it were circular.

55

frequency of next character

k-gram frequency A B C X

A B C 4 3 0 0 1

B C A 3 0 3 0 0

C A B 3 0 0 3 0

B C X 1 ? ? ? ?

text (k = 3)

Getting stuck

Fix. Treat string as if it were circular.

56

frequency of next character

k-gram frequency A B C X

A B C 4 3 0 0 1

B C A 3 0 3 0 0

C A B 3 0 0 3 0

B C X 1 1 0 0 0

C X A 1 0 1 0 0

X A B 1 0 0 1 0

text (k = 3)

implementation trick: append first k characters to end

ASSIGNMENT 7 TIPS AND TRICKS

‣ Markov chains

‣ overview of assignment

‣ Markov model data type

‣ text generator client

http://princeton.edu/~cos126

k-gram A C G T

A A 1 0 1 0

A G 3 0 2 0

C G 1 0 0 0

G A 1 0 4 0

G C 0 0 1 0

G G 1 1 1 0

Trajectory through a Markov chain

Initialization. Initial k-gram = first k characters in text.

Transition. Given k-gram, pick next character with probability from corresponding row in table.

66

...

Tips and tricks

Reading input text.

Do not call StdIn.readString(); it discards whitespace.

Instead, call StdIn.readAll().

 
Printing output.

Do not attempt to store output string.

Instead, print each character as you generate it.

 
Updating state of Markov chain.

Do not attempt to store output string.

Instead, maintain only the last k characters.

The substring() method comes in handy.

67

Extensions

68
http://joshmillard.com/garkov

Rooter: A Methodology for the Typical Unification
of Access Points and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

ABSTRACT

Many physicists would agree that, had it not been for
congestion control, the evaluation of web browsers might never
have occurred. In fact, few hackers worldwide would disagree
with the essential unification of voice-over-IP and public-
private key pair. In order to solve this riddle, we confirm that
SMPs can be made stochastic, cacheable, and interposable.

I. INTRODUCTION

Many scholars would agree that, had it not been for active
networks, the simulation of Lamport clocks might never have
occurred. The notion that end-users synchronize with the
investigation of Markov models is rarely outdated. A theo-
retical grand challenge in theory is the important unification
of virtual machines and real-time theory. To what extent can
web browsers be constructed to achieve this purpose?
Certainly, the usual methods for the emulation of Smalltalk

that paved the way for the investigation of rasterization do
not apply in this area. In the opinions of many, despite the
fact that conventional wisdom states that this grand challenge
is continuously answered by the study of access points, we
believe that a different solution is necessary. It should be
noted that Rooter runs in Ω(log log n) time. Certainly, the
shortcoming of this type of solution, however, is that compilers
and superpages are mostly incompatible. Despite the fact that
similar methodologies visualize XML, we surmount this issue
without synthesizing distributed archetypes.
We question the need for digital-to-analog converters. It

should be noted that we allow DHCP to harness homoge-
neous epistemologies without the evaluation of evolutionary
programming [2], [12], [14]. Contrarily, the lookaside buffer
might not be the panacea that end-users expected. However,
this method is never considered confusing. Our approach
turns the knowledge-base communication sledgehammer into
a scalpel.
Our focus in our research is not on whether symmetric

encryption and expert systems are largely incompatible, but
rather on proposing new flexible symmetries (Rooter). Indeed,
active networks and virtual machines have a long history of
collaborating in this manner. The basic tenet of this solution
is the refinement of Scheme. The disadvantage of this type
of approach, however, is that public-private key pair and red-
black trees are rarely incompatible. The usual methods for the
visualization of RPCs do not apply in this area. Therefore, we
see no reason not to use electronic modalities to measure the
improvement of hierarchical databases.

The rest of this paper is organized as follows. For starters,
we motivate the need for fiber-optic cables. We place our
work in context with the prior work in this area. To ad-
dress this obstacle, we disprove that even though the much-
tauted autonomous algorithm for the construction of digital-
to-analog converters by Jones [10] is NP-complete, object-
oriented languages can be made signed, decentralized, and
signed. Along these same lines, to accomplish this mission, we
concentrate our efforts on showing that the famous ubiquitous
algorithm for the exploration of robots by Sato et al. runs in
Ω((n + log n)) time [22]. In the end, we conclude.

II. ARCHITECTURE
Our research is principled. Consider the early methodology

by Martin and Smith; our model is similar, but will actually
overcome this grand challenge. Despite the fact that such
a claim at first glance seems unexpected, it is buffetted by
previous work in the field. Any significant development of
secure theory will clearly require that the acclaimed real-
time algorithm for the refinement of write-ahead logging by
Edward Feigenbaum et al. [15] is impossible; our application
is no different. This may or may not actually hold in reality.
We consider an application consisting of n access points.
Next, the model for our heuristic consists of four independent
components: simulated annealing, active networks, flexible
modalities, and the study of reinforcement learning.
We consider an algorithm consisting of n semaphores.

Any unproven synthesis of introspective methodologies will
clearly require that the well-known reliable algorithm for the
investigation of randomized algorithms by Zheng is in Co-NP;
our application is no different. The question is, will Rooter
satisfy all of these assumptions? No.
Reality aside, we would like to deploy a methodology for

how Rooter might behave in theory. Furthermore, consider
the early architecture by Sato; our methodology is similar,
but will actually achieve this goal. despite the results by Ken
Thompson, we can disconfirm that expert systems can be made
amphibious, highly-available, and linear-time. See our prior
technical report [9] for details.

III. IMPLEMENTATION
Our implementation of our approach is low-energy,

Bayesian, and introspective. Further, the 91 C files contains
about 8969 lines of SmallTalk. Rooter requires root access
in order to locate mobile communication. Despite the fact
that we have not yet optimized for complexity, this should be
simple once we finish designing the server daemon. Overall,

Rooter: A Methodology for the Typical Unification
of Access Points and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

ABSTRACT

Many physicists would agree that, had it not been for
congestion control, the evaluation of web browsers might never
have occurred. In fact, few hackers worldwide would disagree
with the essential unification of voice-over-IP and public-
private key pair. In order to solve this riddle, we confirm that
SMPs can be made stochastic, cacheable, and interposable.

I. INTRODUCTION

Many scholars would agree that, had it not been for active
networks, the simulation of Lamport clocks might never have
occurred. The notion that end-users synchronize with the
investigation of Markov models is rarely outdated. A theo-
retical grand challenge in theory is the important unification
of virtual machines and real-time theory. To what extent can
web browsers be constructed to achieve this purpose?
Certainly, the usual methods for the emulation of Smalltalk

that paved the way for the investigation of rasterization do
not apply in this area. In the opinions of many, despite the
fact that conventional wisdom states that this grand challenge
is continuously answered by the study of access points, we
believe that a different solution is necessary. It should be
noted that Rooter runs in Ω(log log n) time. Certainly, the
shortcoming of this type of solution, however, is that compilers
and superpages are mostly incompatible. Despite the fact that
similar methodologies visualize XML, we surmount this issue
without synthesizing distributed archetypes.
We question the need for digital-to-analog converters. It

should be noted that we allow DHCP to harness homoge-
neous epistemologies without the evaluation of evolutionary
programming [2], [12], [14]. Contrarily, the lookaside buffer
might not be the panacea that end-users expected. However,
this method is never considered confusing. Our approach
turns the knowledge-base communication sledgehammer into
a scalpel.
Our focus in our research is not on whether symmetric

encryption and expert systems are largely incompatible, but
rather on proposing new flexible symmetries (Rooter). Indeed,
active networks and virtual machines have a long history of
collaborating in this manner. The basic tenet of this solution
is the refinement of Scheme. The disadvantage of this type
of approach, however, is that public-private key pair and red-
black trees are rarely incompatible. The usual methods for the
visualization of RPCs do not apply in this area. Therefore, we
see no reason not to use electronic modalities to measure the
improvement of hierarchical databases.

The rest of this paper is organized as follows. For starters,
we motivate the need for fiber-optic cables. We place our
work in context with the prior work in this area. To ad-
dress this obstacle, we disprove that even though the much-
tauted autonomous algorithm for the construction of digital-
to-analog converters by Jones [10] is NP-complete, object-
oriented languages can be made signed, decentralized, and
signed. Along these same lines, to accomplish this mission, we
concentrate our efforts on showing that the famous ubiquitous
algorithm for the exploration of robots by Sato et al. runs in
Ω((n + log n)) time [22]. In the end, we conclude.

II. ARCHITECTURE
Our research is principled. Consider the early methodology

by Martin and Smith; our model is similar, but will actually
overcome this grand challenge. Despite the fact that such
a claim at first glance seems unexpected, it is buffetted by
previous work in the field. Any significant development of
secure theory will clearly require that the acclaimed real-
time algorithm for the refinement of write-ahead logging by
Edward Feigenbaum et al. [15] is impossible; our application
is no different. This may or may not actually hold in reality.
We consider an application consisting of n access points.
Next, the model for our heuristic consists of four independent
components: simulated annealing, active networks, flexible
modalities, and the study of reinforcement learning.
We consider an algorithm consisting of n semaphores.

Any unproven synthesis of introspective methodologies will
clearly require that the well-known reliable algorithm for the
investigation of randomized algorithms by Zheng is in Co-NP;
our application is no different. The question is, will Rooter
satisfy all of these assumptions? No.
Reality aside, we would like to deploy a methodology for

how Rooter might behave in theory. Furthermore, consider
the early architecture by Sato; our methodology is similar,
but will actually achieve this goal. despite the results by Ken
Thompson, we can disconfirm that expert systems can be made
amphibious, highly-available, and linear-time. See our prior
technical report [9] for details.

III. IMPLEMENTATION
Our implementation of our approach is low-energy,

Bayesian, and introspective. Further, the 91 C files contains
about 8969 lines of SmallTalk. Rooter requires root access
in order to locate mobile communication. Despite the fact
that we have not yet optimized for complexity, this should be
simple once we finish designing the server daemon. Overall,

Extensions

69

computer-generated jazz improvisation

