
Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 3/30/17 9:59 AM

ASSIGNMENT 5 TIPS AND TRICKS

‣ linear-feedback shift registers

‣ Java implementation

‣ a simple encryption scheme

Kevin Wayne

http://introcs.cs.princeton.edu

Goals

・OOP: implement a data type; write a client program to use it.

・LFSR: learn about a simple machine and encryption scheme.

2

http://introcs.cs.princeton.edu

ASSIGNMENT 5 TIPS AND TRICKS

‣ linear-feedback shift registers

‣ Java implementation

‣ a simple encryption scheme

Linear-feedback shift register

・Bit: 0 or 1.

・Cell: storage element that holds one bit.

・Register: sequence of cells.

・Seed: initial sequence of bits.

・Feedback: Compute xor of two bits and put result at right.

・Tap: bit positions used for xor (one is always leftmost bit).

・Shift register: when clock ticks, bits propagate one position to left.

4

^

01000010110 1

an 11-bit LFSR

11 10 9 8 7 6 5 4 3 2 1

Linear-feedback shift register simulation

5

^

01000010110 1 0 1 1 0 1 0 0 0 0 1 0 0

step

^

10100001011 1 1 1 0 1 0 0 0 0 1 0 1 1

^

11010000101 0 1 0 1 0 0 0 0 1 0 1 1 2

^

01101000010 0 0 1 0 0 0 0 1 0 1 1 0 3

^

00110100001 1 1 0 0 0 0 1 0 1 1 0 0 4

0 0 0 0 1 0 1 1 0 0 1 5

history of register contents

a pseudo-random
bit sequence!

LFSR quiz

Which are the next two bits that the LFSR outputs?

A. 0 0

B. 0 1

C. 1 0

D. 1 1

6

^

10011010001 1

^

01001101000 0

http://introcs.cs.princeton.edu

ASSIGNMENT 5 TIPS AND TRICKS

‣ linear-feedback shift registers

‣ Java implementation

‣ a simple encryption scheme

Applications programming interface

API. Specifies the set of operations.

8

 public class LFSR

public LFSR(int seed, int tap) creates an LFSR with specified seed and tap

public int length() returns the length of the LFSR

public int bitAt(int i) returns bit i as 0 or 1

public String toString() returns a string representation of this LFSR

public int step() simulates one step; return next bit as 0 or 1

public int generate(int k) simulates k steps; return next k bits as k-bit integer

 public static void main(String[] args) tests every method in this class

LFSR.java template

9

public class LFSR {
 // Define instance variables here.

 // Creates an LFSR with the specified seed and tap.
 public LFSR(int seed, int tap)

 // Returns the length of the LFSR.
 public int length()

 // Returns bit i of this LFSR as 0 or 1.
 public int bitAt(int i)

 // Returns a string representation of this LFSR.
 public String toString()

 // Simulates one step of this LFSR; returns next bit as 0 or 1.
 public int step()

 // Simulates k steps of this LFSR; returns next k bits as a k-bit integer.
 public int generate(int k)

 // Tests every method in this class.
 public static void main(String[] args)
}

Testing

Develop program incrementally, one method at a time.

1. Define instance variables.

2. Implement construtor.

3. Implement length().

4. Implement bitAt().

5. Implement toString().

6. Implement step().

7. Implement generate().

 
Tip. Testing iteratively is the key to success.

10

LFSR representation

Q. How to represent the LFSR?

A. Several viable approaches.

 
 
 
 
 
Approach 1. Integer array of length n in forward order: reg[i] = bit (i + 1).
Approach 2. Integer array of length n+1 in forward order: reg[i] = bit i.
Approach 3. Integer array of length n in reverse order: reg[i] = bit n − i.
Approach 4. Boolean array of length n or n+1, in forward or reverse order.

Approach 5. String of length n: reg.charAt(i) = character corresponding to bit n − i.
 
 
Key point. The client doesn’t know (or care) how you represent the data type.

11

0 1 1 0 1 0 0 0 0 1 0

11 10 9 8 7 6 5 4 3 2 1

LFSR indices go from
right to left, starting at 1

String representation

Java’s toString() method.

・Every Java class has a toString() method; 
by default, it returns the memory address of the object.

・Defining a custom toString() method overrides the default one.

・Java calls the toString() method automatically with string concatenation and StdOut.println().

 
 
 
 
 
Best practice. Override the toString() method to facilitate debugging.

 
Tip. If you use an array representation, concatenate array elements (in proper order).

12

LFSR lfsr = new LFSR("01101000010", 9);

StdOut.println(lfsr.toString()); // print string representation

StdOut.println(lfsr); // better style

Generating a k-bit integer

Q. Suppose next 5 bits are 1 1 0 0 1 . How to convert into a 5-bit integer?

A1. Binary-to-decimal conversion: 1 𐄂 24 + 1 𐄂 23 + 0 𐄂 22 + 0 𐄂 21 + 1 𐄂 20 = 25.

A2. Horner’s method: 2 𐄂 (2 𐄂 (2 𐄂 (2 𐄂 (1) + 1) + 0) + 0) + 1 = 25.

 
 
Horner’s method.

・Initialize a variable sum to 0.

・For each bit, from left to right

– double sum and add bit 
 
 
 
 
 

Tip. To implement generate(k), don’t simulate LFSR from scratch; instead, make k calls to step().

13

sum bits

0 1

1 1

3 0

6 0

12 1

25

Java characters

A char in Java is a 16-bit unsigned integer.

 
Unicode. Characters are encoded using Unicode.

・'A' is 65.

・'0' is 48.

・'1' is 49.

・'á' is 225.

・'☯' is 9775.

 
Best practices. Don’t write code that depends on internal representation.

・Good: if (c == '0').

・Bad: if (c == 48).

14

6676.5 n Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.
Given a 2-digit hex number, use the first hex
digit as a row index and the second hex digit
as a column reference to find the character
that it encodes. For example, 31 encodes the
digit 1, 4A encodes the letter J, and so forth.
This table is for 7-bit ASCII, so the first hex
digit must be 7 or less. Hex numbers starting
with 0 and 1 (and the numbers 20 and 7F)
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices
like typewriters were controlled by ASCII input; the table highlights a few that you
might see in dumps. For example SP is the space character, NUL is the null character, LF
is line-feed, and CR is carriage-return.

In summary, working with data compression requires us to reorient our thinking about
standard input and standard output to include binary encoding of data. BinaryStdIn
and BinaryStdOut provide the methods that we need. They provide a way for you to
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table

http://introcs.cs.princeton.edu

ASSIGNMENT 5 TIPS AND TRICKS

‣ linear-feedback shift registers

‣ Java implementation

‣ a simple encryption scheme

For each pixel in column-major order:

・Read (red, green, blue) values of pixel.

・Get 8 bits from LFSR and bitwise xor those with red.

・Get 8 bits from LFSR and bitwise xor those with green.

・Get 8 bits from LFSR and bitwise xor those with blue.

・Write (red, green, blue) values of resulting pixel.

A simple encryption scheme

16

original picture

pixel (col, row)

column-major order

transformed picture

For each pixel in column-major order:

・Read (red, green, blue) values of pixel.

・Get 8 bits from LFSR and bitwise xor those with red.

・Get 8 bits from LFSR and bitwise xor those with green.

・Get 8 bits from LFSR and bitwise xor those with blue.

・Write (red, green, blue) values of resulting pixel.

A simple decryption scheme

17

transformed picture

pixel (col, row)

column-major order

transformed transformed picture

Key identity. (x ^ y) ^ y = x ^ (y ^ y) = x ^ 0 = x.

 
Important requirements.

・Must use the same initial LFSR to encrypt and decrypt.

・Must traverse the pixels in the same order.

Why does it work?

18

transform transform

Photomagic.java template

19

public class Photomagic { 
 
 // Returns a transformed copy of the specified picture,  
 // using the specified LFSR.
 public static Picture transform(Picture picture, LFSR lfsr)
 
 // Takes the name of an image file and a description of an LFSR 
 // as command-line arguments; displays a copy of the image that 
 // is "encrypted" using the LFSR.
 public static void main(String[] args)  
}

% java-introcs PhotoMagic pipe.png 01101000010100010000 16

must create and return a copy of picture,
(do not mutate argument picture)

name of image description of LFSR
(seed and tap)

Tip. See ColorSeparation.java from precept.

