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Goals

・TOY:  write two small machine-language programs.

・Hamming codes:  learn about a widely used error-correcting code.
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Noiseless communication channel
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noisy communication channel

Noisy communication channel
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1 1 0 1 . . .



Error-correcting codes
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Error-correcting codes

Message bits:  m1, m2, m3, m4.

Goal.  Send and receive 4 message bits at a time.

 
Noiseless channel.  What you send is what you receive.

Easy.  Send m1, m2, m3, m4.

 
Noisy channel.  One of the 4 bits might get flipped during transmission.

Attempt 1.  Send m1, m2, m3, m4.

Attempt 2.  Send m1, m1, m2, m2, m3, m3, m4, m4.

Attempt 3.  Send m1, m1, m1, m2, m2, m2, m3, m3, m3, m4, m4, m4.

 
 
This assignment.  7–4 Hamming code: correct 1-bit errors, but using only 7 bits instead of 12.
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if two copies of m4 are different, can detect error 
but not enough information to correct error

interpret m4  as 1 if a majority of bits are 1; 

interpret m4  as 0 if a majority of bits are 0



Madame Binary demo
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Parity bits

Message bits:  m1, m2, m3, m4.

Parity bits:  p1, p2, p3.

 
 
 
 
 
 
Parity bits.  Uniquely chosen so that the sum of bits in each circle is even.

9

m1 m2
m4

m3

p1

p2 p3

1 11

0

1

0 0

1 11
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1
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Hamming encoding quiz

 
 
 
 
 
 
 
 
 
Which 7 bits are sent for the message  1 1 0 0 ? 

A. 1 1 0 0 0 0 0

B. 1 1 0 0 0 1 0

C. 1 1 0 0 0 1 1

D. 1 1 0 0 1 1 1
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Useful trick: the xor function

Hint.  Can use the xor function to compute parity bits.

 
 
 
 
 
 
 
 
 
Ex 1.   p1  =  1  ^  1  ^  1  =  1.
Ex 2.   p2  =  1  ^  0  ^  1  =  0.
Ex 3.   p3  =  1  ^  0  ^  1  =  0.
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x y x ^ y

0 0 0

0 1 1

1 0 1

1 1 0

p1 = m1 ^ m2 ^ m4

p2 = m1 ^ m3 ^ m4

p3 = m2 ^ m3 ^ m4
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Message bit m2 flipped
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Message bit m2 flipped
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Message bit m4 flipped
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Message bit m4 flipped
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Parity bit p3 flipped
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Parity bit p3 flipped
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Error correction rule

Compute parity bits p1, p2, and p3 and compare against received bits.

・If at most 1 parity check fails, all message bits are correct.

・If all 3 parity checks fail, then message bit m4 was flipped. 

・If only checks p1 and p2 fail, then message bit m1 was flipped.

・If only checks p1 and p3 fail, then message bit m2 was flipped.

・If only checks p2 and p3 fail, then message bit m3 was flipped.

 
Caveat.  7–4 Hamming code are not designed to detect (or correct) multiple flipped bits.
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Hamming decoding quiz

 
 
 
 
 
 
 
 
 
You receive the bits 1 0 0 0 1 0 1 . Which were the original 4 message bits? 

A. 0 0 0 0

B. 1 0 0 1

C. 1 0 1 0

D. 1 1 0 0
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% more echo.toy  
/***************************************************************** 

 *  Name:    Kevin Wayne 

 *  NetID:   wayne 

 *  Precept: P00 

 * 

 *  Description: Reads integers from standard input until 0000;  
 *               prints each integer to standard output. 

 * ***************************************************************/ 

10: 81FF   read R[1]                 while (!StdIn.isEmpty()) { 
11: C114   if (R[1] == 0) goto 14        a = StdIn.readInt();     
12: 91FF   write R[1]                    StdOut.println(a); 
13: C010   goto 10                   } 

14: 0000   halt 

TOY file format
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memory address (in hex) 
followed by colon

TOY pseudo-code

Java-style comments (optional)

TOY instruction (in hex)

one line of TOY code

any line not of the form XX :  YYYY  
is ignored by TOY simulator



TOY simulator

Edit file.  Use any text editor (such as DrJava).

 
Not-so-useful feature in DrJava.

・DrJava auto-indents lines.

・Preferences → Miscellaneous → Indent Level = 0.  
[switch back to 4 after this assignment]

 
Execute.  Execute TOY program from command line.

・TOY.java must be in same directory as .toy files.

・java-introcs TOY encode.toy < encode3.txt

・java-introcs TOY decode.toy < decode5.txt
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% more encode3.txt  
0001 0001 0000 0001 
0001 0001 0001 0000 
0001 0001 0001 0001 
FFFF

for simplicity, each bit stored 
as 16-bit TOY word

end of file convention

% more decode3.txt  
0001 0000 0000 0001 0001 0000 0000 
0000 0001 0001 0000 0000 0000 0000 
0001 0001 0001 0001 0001 0001 0000 
FFFF 

4 bits to encode

7 bits to encode



Visual X-TOY simulator

Edit mode.  Write your TOY program.

Debug mode.  Execute your TOY program.

Simulation mode.  For historical context.

 
Useful features.

・Syntax highlighting.

・Automatically generates TOY pseudo-code.

・Tools → Check Syntax.

・Mode → Load File to Stdin.
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written by Brian Tsang '04
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Tips to avoid common bugs

・Start your TOY code at line 10.

・Check that each line of TOY code has format XX:YYYY. 

・Remember that “everything” is in hex (line 1A follows 19).

・Make sure TOY code and pseudo-code match.

・Document the purpose of each register (and don’t reuse). 

・Use care when inserting a line of code:  
might need to update jump statement if line to goto changes.

・Repeatedly read 4- or 7-bits from standard input until FFFF.
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