
Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 3/20/17 12:26 PM

HAMMING CODES IN TOY

‣ Hamming codes

‣ TOY simulator

‣ bugs to avoid

Kevin Wayne

http://introcs.cs.princeton.edu

http://intros.cs.princeton.edu

Goals

・TOY: write two small machine-language programs.

・Hamming codes: learn about a widely used error-correcting code.

2

http://introcs.cs.princeton.edu

HAMMING CODES IN TOY

‣ Hamming codes

‣ TOY simulator

‣ bugs to avoid

http://intros.cs.princeton.edu

Noiseless communication channel

4

1 1 0 1 . . .

noiseless communication channel

1 1 0 1 . . .

noisy communication channel

Noisy communication channel

5

1 0 0 1 . . .

bit flipped

1 1 0 1 . . .

Error-correcting codes

6

1 1 0 1 . . . 1 0 0 1 1 0 0 . . .

bit flipped

1 1 0 1 1 0 0 . . . 1 1 0 1 . . .

append redundant
information

redundant information
enables correction of

singe-bit error

noisy communication channel

Error-correcting codes

Message bits: m1, m2, m3, m4.

Goal. Send and receive 4 message bits at a time.

 
Noiseless channel. What you send is what you receive.

Easy. Send m1, m2, m3, m4.

 
Noisy channel. One of the 4 bits might get flipped during transmission.

Attempt 1. Send m1, m2, m3, m4.

Attempt 2. Send m1, m1, m2, m2, m3, m3, m4, m4.

Attempt 3. Send m1, m1, m1, m2, m2, m2, m3, m3, m3, m4, m4, m4.

 
 
This assignment. 7–4 Hamming code: correct 1-bit errors, but using only 7 bits instead of 12.

7

if two copies of m4 are different, can detect error 
but not enough information to correct error

interpret m4 as 1 if a majority of bits are 1;

interpret m4 as 0 if a majority of bits are 0

Madame Binary demo

8

Parity bits

Message bits: m1, m2, m3, m4.

Parity bits: p1, p2, p3.

 
 
 
 
 
 
Parity bits. Uniquely chosen so that the sum of bits in each circle is even.

9

m1 m2
m4

m3

p1

p2 p3

1 11

0

1

0 0

1 11

0

1

0 0

1 + 1 + 1 + p1 = even

1 11

0

1

0 0

1 + 1 + 0 + p2 = even

1 11

0

1

0 0

1 + 1 + 0 + p3 = even

Hamming encoding quiz

 
 
 
 
 
 
 
 
 
Which 7 bits are sent for the message 1 1 0 0 ?

A. 1 1 0 0 0 0 0

B. 1 1 0 0 0 1 0

C. 1 1 0 0 0 1 1

D. 1 1 0 0 1 1 1

10

1 10

0

m1 m2
m4

m3

p1

p2 p3

QuizSocket.com

Useful trick: the xor function

Hint. Can use the xor function to compute parity bits.

 
 
 
 
 
 
 
 
 
Ex 1. p1 = 1 ^ 1 ^ 1 = 1.
Ex 2. p2 = 1 ^ 0 ^ 1 = 0.
Ex 3. p3 = 1 ^ 0 ^ 1 = 0.

11

x y x ^ y

0 0 0

0 1 1

1 0 1

1 1 0

p1 = m1 ^ m2 ^ m4

p2 = m1 ^ m3 ^ m4

p3 = m2 ^ m3 ^ m4

1 11

0

1

0 0

1 + 1 + 1 + p1 = even

1 11

0

1

0 0

1 + 1 + 0 + p2 = even

1 11

0

1

0 0

1 + 1 + 0 + p3 = even

Message bit m2 flipped

12

m1 m2
m4

m3

p1

p2 p3

1 + 1 + 0 + 1 = odd
()

1 01

0

1

0 0

1 + 1 + 0 + 0 = even
(left passes)

1 01

0

1

0 0

1 + 0 + 0 + 0 = odd
()

1 01

0

1

0 0

suppose 1001100 received

1 01

0

1

0 0

1101100 transmitted

1 11

0

1

0 0

top fails right fails

Message bit m2 flipped

13

1101100 transmitted

m1 m2
m4

m3

p1

p2 p3

suppose 1001100 received

1 01

0

1

0 0

m2

1101100 transmitted

1 11

0

1

0 0

top fails

right fails

Message bit m4 flipped

14

m1 m2
m4

m3

p1

p2 p3

1 + 1 + 0 +1 = odd
()

1 10

0

1

0 0

1 + 0 + 0 + 0 = odd
()

1 10

0

1

0 0

1 + 0 + 0 + 0 = odd
()

1 10

0

1

0 0

suppose 1100100 received

1 10

0

1

0 0

1101100 transmitted

1 11

0

1

0 0

top fails left fails right fails

Message bit m4 flipped

15

1101100 transmitted

m1 m2
m4

m3

p1

p2 p3

suppose 1001100 received

1 01

0

1

0 0

1101100 transmitted

1 11

0

1

0 0

m4

top fails

left fails right fails

Parity bit p3 flipped

16

m1 m2
m4

m3

p1

p2 p3

1 + 1 + 1 + 1 = even
(top passes)

1 11

0

1

0 1

1 + 1 + 0 + 0 = even
(left passes)

1 11

0

1

0 1

1 + 1 + 0 + 1 = odd
()

1 11

0

1

0 1

suppose 1101101 received

1 11

0

1

0 1

1101100 transmitted

1 11

0

1

0 0

right fails

Parity bit p3 flipped

17

1101100 transmitted

m1 m2
m4

m3

p1

p2 p3

suppose 1101110 received

1 01

0

1

0 1

1101100 transmitted

1 11

0

1

0 0

p3

right fails

Error correction rule

Compute parity bits p1, p2, and p3 and compare against received bits.

・If at most 1 parity check fails, all message bits are correct.

・If all 3 parity checks fail, then message bit m4 was flipped.

・If only checks p1 and p2 fail, then message bit m1 was flipped.

・If only checks p1 and p3 fail, then message bit m2 was flipped.

・If only checks p2 and p3 fail, then message bit m3 was flipped.

 
Caveat. 7–4 Hamming code are not designed to detect (or correct) multiple flipped bits.

18

Hamming decoding quiz

 
 
 
 
 
 
 
 
 
You receive the bits 1 0 0 0 1 0 1 . Which were the original 4 message bits?

A. 0 0 0 0

B. 1 0 0 1

C. 1 0 1 0

D. 1 1 0 0

20

1 00

0

1

0 1

m1 m2
m4

m3

p1

p2 p3

http://introcs.cs.princeton.edu

HAMMING CODES IN TOY

‣ Hamming codes

‣ TOY simulator

‣ bugs to avoid

http://intros.cs.princeton.edu

% more echo.toy  
/***

 * Name: Kevin Wayne

 * NetID: wayne

 * Precept: P00

 *

 * Description: Reads integers from standard input until 0000;  
 * prints each integer to standard output.

 * ***/

10: 81FF read R[1] while (!StdIn.isEmpty()) {
11: C114 if (R[1] == 0) goto 14 a = StdIn.readInt();
12: 91FF write R[1] StdOut.println(a);
13: C010 goto 10 }

14: 0000 halt

TOY file format

22

memory address (in hex)
followed by colon

TOY pseudo-code

Java-style comments (optional)

TOY instruction (in hex)

one line of TOY code

any line not of the form XX : YYYY
is ignored by TOY simulator

TOY simulator

Edit file. Use any text editor (such as DrJava).

 
Not-so-useful feature in DrJava.

・DrJava auto-indents lines.

・Preferences → Miscellaneous → Indent Level = 0.  
[switch back to 4 after this assignment]

 
Execute. Execute TOY program from command line.

・TOY.java must be in same directory as .toy files.

・java-introcs TOY encode.toy < encode3.txt

・java-introcs TOY decode.toy < decode5.txt

23

% more encode3.txt  
0001 0001 0000 0001
0001 0001 0001 0000
0001 0001 0001 0001
FFFF

for simplicity, each bit stored
as 16-bit TOY word

end of file convention

% more decode3.txt  
0001 0000 0000 0001 0001 0000 0000
0000 0001 0001 0000 0000 0000 0000
0001 0001 0001 0001 0001 0001 0000
FFFF

4 bits to encode

7 bits to encode

Visual X-TOY simulator

Edit mode. Write your TOY program.

Debug mode. Execute your TOY program.

Simulation mode. For historical context.

 
Useful features.

・Syntax highlighting.

・Automatically generates TOY pseudo-code.

・Tools → Check Syntax.

・Mode → Load File to Stdin.

24

written by Brian Tsang '04

http://introcs.cs.princeton.edu

HAMMING CODES IN TOY

‣ Hamming codes

‣ TOY simulator

‣ bugs to avoid

http://intros.cs.princeton.edu

Tips to avoid common bugs

・Start your TOY code at line 10.

・Check that each line of TOY code has format XX:YYYY.

・Remember that “everything” is in hex (line 1A follows 19).

・Make sure TOY code and pseudo-code match.

・Document the purpose of each register (and don’t reuse).

・Use care when inserting a line of code:  
might need to update jump statement if line to goto changes.

・Repeatedly read 4- or 7-bits from standard input until FFFF.

26

