
Computer Science ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/25/17 6:00 PM

ALL QUESTIONS THEORY

‣ REs, DFAs, and NFAs

‣ Universality and computability

‣ P, NP, NP-complete

Kevin Wayne

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

Computer
Science

An Interdisciplinary Approach

http://intros.cs.princeton.edu

ALL QUESTIONS THEORY

‣ REs, DFAs, and NFAs

‣ Universality and computability

‣ P, NP, NP-complete

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

Computer
Science

An Interdisciplinary Approach

http://intros.cs.princeton.edu

Alphabet. Finite set of symbols.

 
 
String. Sequence of alphabet symbols.

 
 
 
 
Formal language. Set of strings.

Definitions

3

, , , … }{

Big ideas

Regular expression. Concise notation for specifying a formal language.

 
Relevance. Widely used in practice to

Validate web forms.

Express legal queries.

Specify biological sequences.

Define elements of a programming language.

Enforce programming style guidelines.

….

4

 <module name="LocalVariableName">

 <property name = "format"

 value = "^[a-z][a-zA-Z0-9]*$"/>

</module>

Big ideas

Regular expression. Concise notation for specifying a formal language.

5

operation order example RE matches does not match

concatenation 3 AABAAB AABAAB every other string

union 4 AA | BAAB
AA

BAAB
every other string

closure 2 AB*A
AA  

ABBBBBBBBA
AB

ABABA

parentheses 1

A(A|B)AAB
AAAAB  
ABAAB

every other string

(AB)*A
A  

ABABABABABA
AA

ABBA

Spring 2015, Question 3

For each English-language description at right, design an RE that describes the formal language.

6

__ Binary strings beginning and ending with the same bit

__

Binary strings containing exactly two 0s that are

not adjacent and no other 0s

__ Binary numbers divisible by 8

Big ideas

DFA. A simple machine that recognizes a language. For each input symbol and each state, 
there is exactly one possible state transition.

 
 
 
 
 
 
 
 
 
 
 
Kleene’s theorem. REs, DFAs, and NFAs are equivalent models—they all characterize the regular languages. 

Relevance. DFAs and NFAs solve the recognition problem for REs.

7

Yes No No

a
b

a
b

a

b

NO

YES

A deterministic finite-state automaton

0 1 2

transition

reject
stateaccept

state

tape reader

Tracing a DFA

8

Yes No No

B B A B A B B B

B

B B

AAA

input string
accept

Spring 2009, Question 9

For each DFA at right, select the best-matching RE at left.

9

A. a*|(a*ba*ba*ba*)*

B. (ab)*

C. (a*b)+

D. ba*

ALL QUESTIONS THEORY

‣ REs, DFAs, and NFAs

‣ Universality and computability

‣ P, NP, NP-complete

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

Computer
Science

An Interdisciplinary Approach

http://intros.cs.princeton.edu

Turing machine. A simple, universal model of computation.  
(similar to a DFA, but can read/write to tape, which is arbitrarily long)

 
 
 
 
 
 
 
 
 
 
 
 
 
Relevance. Provides rigorous definition of a computer program; enables study of computation.

Big ideas

11

A Turing machine

full drawing

abbreviation

NO

YES

HALT

tape head
tape

R L H#:#
0 1 2

1:0

0:1

#

writeread

1:1

0:0

R L H#
0 1 2

1:0

0:1

#:1

#:1

Big ideas

Halting problem. Given a Java program (or TM) and its input, does that program halt when run on that input?

 
Computability. The halting problem is undecidable—it’s impossible to write a Java program (or TM) to solve.

 
 
 
 
 
 
 
 
 
 
 
Church–Turing thesis (modern interpretation). A TM can perform any computation (decide a language or

compute a function) that can be described by any physically realizable computing device.

12

Spring 2012, Question 8 and Fall 2012, Question 9

13

TRUE FALSE UNKNOWN

For any language that some TM decides,  
there exists a DFA that recognizes the same language.

⃝ ⃝ ⃝

For any language that some RE describes,

there exists a TM that decides the same language.

⃝ ⃝ ⃝

For any function that some TM computes, there exists

a Java program that computes the same function.

⃝ ⃝ ⃝

Most computer scientists believe that the Church–

Turing thesis will eventually be proved true.
⃝ ⃝ ⃝

No future computer can solve the halting problem. ⃝ ⃝ ⃝

ALL QUESTIONS THEORY

‣ REs, DFAs, and NFAs

‣ Universality and computability

‣ P, NP, NP-complete

http://introcs.cs.princeton.edu

R O B E R T S E D G E W I C K
K E V I N W A Y N E

Computer
Science

An Interdisciplinary Approach

http://intros.cs.princeton.edu

Big ideas (polynomial time vs. exponential time)

Polynomial-time algorithm. Running time ≤ a nb for all inputs of size n.

  
Exponential-time algorithm. Running time ≥ 2n for infinitely many inputs. 

 
Relevance. “Efficient in practice.”

15

or 1.1√n or n!

1K

T

2T

4T

8T

64T

512T

1024T

ex
po

ne
nt

ia
l

Orders of growth (log−log plot)

size

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 1024K

time

Polynomial time vs. exponential time

Classify each algorithm.

16

POLYNOMIAL EXPONENTIAL

mergesort
(to sort an array of n elements)

⃝ ⃝

insertion sort
(to sort an array of n elements)

⃝ ⃝

recursive H-tree program
(to draw an H-tree of order n)

⃝ ⃝

smallest increase heuristic 
(to build a TSP tour of n points)

⃝ ⃝

brute-force TSP algorithm
(that tries all n! permutations)

⃝ ⃝

Search problem. There exists a poly-time algorithm that checks whether a given solution solves  
a given instance of the problem.

 
FACTOR. Given an n-digit integer x, find a factor (other than 1 and x). 

Q. How to show that FACTOR is a search problem?

A. Given a purported factor d, need a poly-time algorithm to check that

d is not equal to 1 or x.

d is a divisor of x.

Big ideas (search problems)

17

grade-school division is n2

(faster algorithms are known)

Instance. x = 305753

Factor? d = 31

Big ideas (search problems)

Search problem. There exists a poly-time algorithm that checks whether a given solution solves  
a given instance of the problem.

 
TSP. Given n points in the plane and an integer L, find a tour of length at most L.

 
Q. How to show that TSP is a search problem?

A. Given a purported tour x, need a poly-time algorithm to verify that

x is a tour (i.e, a permutation of the n points).

The length of x is at most L.

18

distance between two points

is Euclidean distance,

rounded to the nearest inch

Big ideas (P vs. NP)

NP. The set of all search problems.

P. The set of all search problems that can be solved in polynomial time.

 
Relevance. NP contains problems that we aspire to solve in practice;

 P contains problems that we can solve in practice.

 
Definition. A problem is intractable if there exists no poly-time algorithm to solve it.

 
Famous conjecture. P ≠ NP [There exist intractable search problems]

19

NP

P

P ≠ NP

P = NP

intractable

search problems

P = NP

no intractable

search problems

Fall 2014, Question 8

20

TRUE FALSE UNKNOWN

TSP is in NP. ⃝ ⃝ ⃝

Every problem in P is also in NP. ⃝ ⃝ ⃝

Every problem in NP is also in P. ⃝ ⃝ ⃝

Every problem in NP can be solved with an exponential-time algorithm. ⃝ ⃝ ⃝

The halting problem is in NP. ⃝ ⃝ ⃝

If P = NP, then there exists a poly-time algorithm for FACTOR. ⃝ ⃝ ⃝

Big ideas (poly-time reductions)

Definition. A problem A poly-time reduces to a problem B if there exists an algorithm for A that uses a

polynomial number of calls to a subroutine for B, plus polynomial time outside of those subroutine calls.

 
 
 
 
 
 
 
 
 
 
Intuition. Can solve B efficiently ⇒ can also solve A efficiently.

Contrapositive. Can’t solve A efficiently ⇒ can’t solve B efficiently either.  

Definition. A search problem B is NP-complete if every search problem A poly-time reduces to B.

21

 
instance a 

(of A)

solution to a

Algorithm to solve A

Algorithm
to solve B

A poly-time reduces to B
(A can be solved by B)

Spring 2015, Question 5a

Suppose that problem A poly-time reduces to problem B. Which of the following statements can we infer?

22

TRUE FALSE

If B is in P, then A is in P. ⃝ ⃝

If A is in P, then B is in P. ⃝ ⃝

If A is NP-complete, then B is NP-complete. ⃝ ⃝

If A is NP-complete and B is in NP, then B is NP-complete. ⃝ ⃝

A and B cannot both be NP-complete. ⃝ ⃝

