C O m p U t e I‘ S C 1 e n C e ROBERT SEDGEWICK | KEVIN WAYNE

ALL QUESTIONS THEORY

| h\ 4(.

or

» REs, DFAs, and NFAs
» Universality and computability

COMPUTER » P, NP, NP-complete

SCIENCE

p|

"ROBERT SEDGEWICK
EEEEEEEEEEE

http://introcs.cs.princeton.edu

http://intros.cs.princeton.edu

ALL QUESTIONS THEORY

» REs, DFAs, and NFAs

COMPUTER
SC IENCE

http://introcs.cs.princeton.edu

http://intros.cs.princeton.edu

Definitions

Alphabet. Finite set of symbols.

String. Sequence of alphabet symbols.

[A]BJA]

Formal language. Set of strings.

{ [AIB]A], [A]B][B]A], (A[B]BIB]A], ...}

Big ideas

Regular expression. Concise notation for specifying a formal language.

Relevance. Widely used in practice to
- Validate web forms.

- Express legal queries.
« Specify biological sequences.

« Define elements of a programming language. <module name="LocalVariableName">

- Enforce programming style guidelines. <property name = "format

value = "Ala-z][a-zA-Z0-9]*$" />
LR </module>

First name. .
Last name:
Username:
£ -mail
password:
Phone-
Date:

Address: Soeee

i

i - W@y checksty'e
g, LGX'SNeX|STM fvaps?g%}:ﬁ:r?guage

powered by

Big ideas

Regular expression. Concise notation for specifying a formal language.

example RE

operation

matches

does not match

concatenation 3 AABAAB
union 4 AA | BAAB
closure 2 AB* A
ACA|B)AAB
parentheses]
(AB) *A

AABAAB

AA

BAAB

AA
ABBBBBBBBA

AAAAB
ABAAB

A
ABABABABABA

every other string

every other string

AB
ABABA

every other string

AA
ABBA

Spring 2015, Question 3

For each English-language description at right, design an RE that describes the formal language.

Binary strings beginning and ending with the same bit

Binary strings containing exactly two Os that are
not adjacent and no other Os

Binary numbers divisible by 8

Big ideas

DFA. A simple machine that recognizes a language. For each input symbol and each state,

there is exactly one possible state transition.

tmnsition

reject
accept 0 state
state \\

es—b—> o—b—» No

/ _/b/

YES

tape reader >~

Kleene’s theorem. REs, DFAs, and NFAs are equivalent models—they all characterize the regular languages.

Relevance. DFAs and NFAs solve the recognition problem for REs.

Tracing a DFA

input string B B A B A B B B

)

() () Q

/— B —’j

accept

Spring 2009, Question 9

For each DFA at right, select the best-matching RE at left.

A. a*| (a*ba*ba*ba®*)*
B. (ab)*

C. (a*h)+

D ba

—
_ /@k b a(g\iab a

ALL QUESTIONS THEORY

» Universality and computability

COMPUTER
SC IENCE

http://introcs.cs.princeton.edu

http://intros.cs.princeton.edu

Big ideas

Turing machine. A simple, universal model of computation.

(similar to a DFA, but can read/write to tape, which is arbitrarily long

PN
(
W

Turing Machine: binaryadder.tur

=

FOH | # | # | # | # | # # # | # | # #1010 |+ |1 |1 |1|1|#|#|H#

2 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19
Status: Ready Steps: 0
{ Input:
S eed: | I I I 1 1 1 I » I 1 1 1] I I I |
]} 4|] m} P [1]010+1111 v

Relevance. Provides rigorous definition of a computer program; ena

2. Effective calculability.
Abbreviation of treatment. A
function is said to be ‘effectively calcu
lable’ if its values can be found by some purely
mechanical process. Although it is fairly easy to get
an intuitive of this idea it is nevertheless desirable
to have some te, mathematically expressible definition.
Such a definition was first given by Gbdel at Princeton in 1934
(Gdel Eﬂszﬁ) followmdg‘m an unpublished suggestion of Herb
rand, and has since been developed by Kleene (Kleene [2]). We shall
not be concerned much here with this particular definition. Another defini
tion of effective calculability has been given bzxghurch (Church [3], 356-358)
who identifies it with A-definability. The anthor has recently sugFested a definition
omespondin%:‘c:);c clos:lg to the intuitive idea (Turing [1], see also Post [1]). It was
said above “a ion is effectively calculable if its values can be found by some pure
ly mechanical process.” We may take this statement literally, understanding by a purely
ical process one which could be carried out by a machine. It is possible to give a
mathematical description, in a certain normal form, of the structures of these machines. T
he development of the idea leads to the author’s definition of a computable function, and
an identification of computability® with effective calculability. (*We shall use the expressio
n‘ table function” to mean a function calculable by a machine, and let ‘effectively ¢
alculable’ refer to the intuitive idea without particular identification with any one of these
definitions. We do not restrict the values taken by a computable function to be natural num
bers; we may for instance have computable propositional functions.) It is not difficult thou
somewhat laborious, to prove these three definitions equivalent (Kleene [3], Turing [2]
. In the present paper we make considerable use of Church’s identification of effec
tive calculability with A-definability, or, what comes to the same, of the identification w
ith 111t1y and one of the equivalence theorems. In most cases where we have to deal
with an effectively calculable function we shall introduce the corres; ing W. F. F. with so
me such phrase as “the function fis effectively calculable, let /* be a A-defining it” or
“let F be a formula such that F (r) is convertible to... whenever 1 represents a positive integer”.
In such cases there is no difficulty in seeing how a machine could in principle be designed to calcu
late the values of the function concerned, and assuming this done the equivalence theorem can be
aéglied. A statement as to what the formula F actually is may be omitted. We may introduce imm
iately on this basis a W. F. F. o with the property that (m, n) conv r if 7 is the greatest positive
integer for which m’ divides n, if any, and is I if there is none. We also introduce Dt with the pr
operties: Dt (z, n) conv 3; Dt (n + m, n) conv 2; Dt (n, n + m) conv 1. There is another point to
made clear in connection with the point of view we are adopting. It is intended that all pr
oofs that are given should be regarded no more critically than proofs in classical analysis.
The subject matter, roughly speaking, is constructive systems of logic, but as the purp
ose is directed towards choosing a particular constructive system of logic for pract
ical use; an attempt at this stage to put our theorems into constructive form w
ould be putting the cart before the horse. Those computable functions whic
h take only the values 0 and 1 are of particular importance since they dete
rmine and are determined by computable properties, as may be seen by r
eplacing ‘0’ and ‘1’ by ‘true’ and ‘false’. But besides this of proper
we may have to consider a different type, which is rougB; speaking,
less constructive than the computable properties, but more so than the
neral predicates of classical mathematics. Supfose we have a com
ﬂg‘mb e function of the natural members taking numbers as values,
en corresponding to this function there is the property of being a value o
f the function. Such a property we shall describe as “axiomatic’; the reason
for using this term is that it is possible to define such a property by giving a
set of axioms, the property to hold for a given argument if and onlyif it is p
ossible to deduce that it holds from the axioms. Axiomatic properties may
also be characterized in this way. A property 1 of positive integers is axioma
tic if and only if there is a computable property ¢ of two positive integers such th
at (x) is true if and only if there is a positive mte%:r y such that ¢ (x, y) is true,
Or again %is axiomatic if and only if there is a W.F. F. F such that () is true if
and only if F (#) conv 2. 3, Number theoretic theorems. By a er theoreti
(“I belie ve there is no generally accepted meaning for this term, but it should be noticed that we are using
it in a rather restricted sense. The mo::ﬂgeernerally accepted meaning is probably this: suppose we take an arbitrary
formula of the function calculus of first and replace the function variables by primitive recursive relations. The resulting formula
represents a tyf)ical number theoretic theorem in this [more general] sense.) we shall mean a theorem of the form ‘0 (x) vanishes for infin
itely many natural numbers x’, where 0 (x) is a primitive recursive® function. (*Primitive recursive functions of natural numbers are
defined inductively as follows.* The class of primitive recursive function is more restricted than the computable functions, but has the advantage
that there is a process whereby one can tell of a set of equations whether it defines a primitive recursive function in the manner described above.
If $ (x, ...,x) is primitive récursive than ¢ (x,,...,x) =0 is described as a primitive recursive between x,,...x,.) We shall say that a problem
is number theoretic if it has been shown that any solution of the problem may be put in the form of a proof of"one or more number theoretic
theorems. More accurately we may say that a class of problems is number theoretic if the solution of any one of them can be transformed (bg a
uniform process) into the form of proofs of number theoretic theorems. I shall now draw a few consequences from the definitions of ‘number
theoretic theorems’, and in section 5 will try to justify confining our considerations to this type of problem. An alternative form for number
theoretical theorems is ‘for each natural number x there exists a natural number y such that ¢ (x,y vanishes’, where ¢ (x,y) is primitive recursive
and conversely. In other words, there is a rule whereby given the function 8 (x) we can find a functions ¢ (xy), or given §x ,y) we can find a
function 0 ;x), so that ‘O (x) vanishes infinitely often”is a necessary and sufficient condition for ‘for each x there is y so that ¢ (x,y) = 0. In fact given
0 (x) we ¢ (x,¥) =0 () +x (xy) where x (x,y) is the (primitive recursive) function with theepro iesa(xy=1(@<x);= > x). If on the
other hand we are given ¢ (x, y) we define 6 (x) by the equations 0, (0)=3; 0, gx +1)=3.2/3 (6, ¥ (¢ (v, (g (x?f -1,0,(0,)); 0 (x) =9 (0,
©,(x))-1,m,(® 5:1))) where ®,_(x) is to be defined so as to mean ‘the largest § for which 7* divides x ‘and 2/3x to be defined primitive recursively sO
as'o have its dsual meaning if x is & multiple of 3. The function d (x) is to be defined by the equations 8 (0) =0,d (x + 1) = 1. It is easily verified
the functions so defined have the desired properties. We shall now show that questions as to the truth of statements of form ‘does f (x) vanish
identically’, whenr?If ?c) is a computable function, can be reduced to questions as to the truth of number theoretical theorems. It is understood that
in each case the rule for the calculation of f gx) is given and that one is satisfied that this rule is valid, i.e. that the machine which should calculate (x) is
circle free ing [1], 232). The function f (s) being computable is general recursive in the Herbrand- 1 sense, and therefore by a general theorem
due to Kleen® [31, 727. *Su; se)f(x 2 X & X), W (x,,..,x) are primitive recursive then ¢ g »---+X,) is primitive recursive if it is defined
by one of the sets of equations :a) —P&:a o@x,... ,xf) =h GpeensX 108 KX)y XX, 0 X), (1 <m<); Stp (xl,,..,xn) =f(x,....x,); (¢) ¢ (x,) = a,
where n =1 and a is some parti ;@ P) =x+ 1Tn=1);() (xl,...,xﬁfﬁ) =f@peaX, s @ (X, X 1) =h fx, X, (x,,...x,)). LMK

bles study of computation.

Big ideas

Halting problem. Given a Java program (or TM) and its input, does that program halt when run on that input?

Computability. The halting problem is undecidable—it’s impossible to write a Java program (or TM) to solve.

2. Effecti ability.
ent. A
function is said to be ‘effectively calcu
lable’ if its values can be found by some purely
mechanical process. Although it is fairly easy to get
an intuitive of this idea it is nevertheless desirable
to have some te, mathematically expressible definition.
Such a definition was first given by Gbdel at Princeton in 1934
(Godel lﬁkzﬁ) followm&m Part an u%ubhshed suggestion of Herb
rand, and has since been developed by Kleene (Kleene [".221. ‘We shall
not be concerned much here with this particular definition. Another defini
T i tion of effective calculability has been given bzag‘hurch (Church [3], 356-358)
who identifies it with A-definability. The anthor has reccntly suggested a definition
ing more closzlgto the intuitive idea (Turing [1], see also Post [1]). It was
said above “a ion is effectively calculable if its values can be found by some pure
ly mechanical process.” We may take this statement literally, understanding by a purely
ical process one which could be carried out by a machine. It is possible to give a
mathematical description, in a certain normal form, of the structures of these machines. T
he development of the idea leads to the author’s definition of a computable function, and
an identification of computability® with effective calculability. (*We shall use the expressio
n* table function” to mean a function calculable by a machine, and let ‘effectively ¢
alculable’ refer to the intuitive idea without particular identification with any one of these
definitions. We do not restrict the values taken by a computable function to be natural num
bers; we may for instance have computable propositional functions.) It is not difficult thou
somewhat laborious, to prove these three definitions equivalent (Kleene [3], Turing [2]
. In the present paper we make considerable use of Church’s identification of effec
tive calculability with A-definability, or, what comes to the same, of the identification w

ith 111tly and one of the equivalence theorems. In most cases where we have to deal
with an effectively calculable function we shall introduce the corres ing W. F. F. with so
me such phrase as “the function fis effectively calculable, let /* be a A-defining it” or

“let F be a formula such that F (r) is convertible to... whenever 1 represents a positive integer”.
In such cases there is no difficulty in seeing how a machine could in principle be designed to calcu
late the values of the function concerned, and assuming this done the equivalence theorem can be
agﬁlied. A statement as to what the formula F actually is may be omitted. We may introduce imm
iately on this basis a W. F. F. o with the property that (m, n) conv r if 7 is the greatest positive
integer for which m’ divides n, if any, and is I if there is none. We also introduce Dt with the pr
operties: Dt (z, n) conv 3; Dt (n + m, n) conv 2; Dt (n, n + m) conv 1. There is another point to
made clear in connection with the point of view we are adopting. It is intended that all pr
oofs that are given should be regarded no more critically than proofs in classical analysis.
The subject matter, roughly speaking, is constructive systems of logic, but as the purp
ose is directed towards choosing a particular constructive system of logic for pract
ical use; an attempt at this stage to put our theorems into constructive form w
ould be putting the cart before the horse. Those computable functions whic
h take only the values 0 and 1 are of particular importance since they dete
rmine and are determined by computable properties, as may be seen by r
eplacing ‘0’ and ‘1’ by ‘true’ and ‘false’. But besides this of proper
we may have to consider a different type, which is rougB; speaking,
less constructive than the computable properties, but more so than the
neral predicates of classical mathematics. SupEose we have a com
tﬂab e function of the natural members taking numbers as values,
corresponding to this function there is the property of being a value o
f the function. Such a property we shall describe as “axiomatic’; the reason
for using this term is that it is possible to define such a property by giving a
set of axioms, the property to hold for a given argument if and onlyif it is p
ossible to deduce that it holds from the axioms. Axiomatic properties may
also be characterized in this way. A property 1 of positive integers is axioma
tic if and only if there is a computable property ¢ of two positive integers such th
at (x) is true if and only if there is a positive mte%:r y such that ¢ (x, y) is true.
Or (?l;glajn %is axiomatic if and only if there is a W.F. F. F such that () is true if
ly if F (n) conv 2. 3, Number theoretic theorems. By a m er theoreti
(“I belie ve there is no generally accepted meaning for this term, but it should be noticed that we are using
it in a rather restricted sense. The most generally accepted meaning is probably this: suppose we take an arbitrary
formula of the function calculus of first omseern and replace the function variables by primitive recursive relations. The resulting formula
represents a typical number theoretic theorem in this [more general] sense.) we shall mean a theorem of the form ‘@ (x) vanishes for infin
itely many natural numbers x’, where 0 (x) is a primitive recursive® function. (*Primitive recursive functions of natural numbers are
defined inductively as follows.* The class of primitive recursive function is more restricted than the computable functions, but has the advantage
that there is a process whereby one can tell of a set of equations whether it defines a primitive recursive function in the manner described above.
If $ (x, ...,x) is primitive récursive than ¢ (x,,...,x) =0 is described as a primitive recursive between x,,...x,.) We shall say that a problem
is number theoretic if it has been shown that any solution of the problem may be put in the form of a proof of"one or more number theoretic
theorems. More accurately we may say that a class of problems is number theoretic if the solution of any one of them can be transformed (bg a
uniform process) into the form of proofs of number theoretic theorems. I shall now draw a few consequences from the definitions of ‘number
theoretic theorems’, and in section 5 will try to justify confining our considerations to this type of problem. An alternative form for number
theoretical theorems is ‘for each natural number x there exists a natural number y such that ¢ (x,y vanishes’, where ¢ (x.y) is primitive recursive
and conversely. In other words, there is a rule whereby given the function 6 (x) we can find a functions ¢ (xy), or given Y §x ,y) we can find a
function 0 (x), so that ‘O (x) vanishes infinitely often”is a necessary and sufficient condition for ‘for each x there is y so that ¢ (x.y) = 0’. In fact given

0 (x) we (x,¥) =0 (y) + x (x,y) where x (x,y) is the (primifive recursive) function with the iesa(xy=1(@y<x);= > x). If on the
other hand we ad;e '\’r’en d (x,y) we geﬁne 0(x b‘; the eqll(gifi](l)lllnls 0 (0)=3;6, gx +1)=3.2/3 (é’lt?x) ($ ((DE (g (Jc?f(Z 1,0, (0, ()); 6 (x) =9 (0,
-1, , (6, (x))) where m, (x) is to be defined so as to mean ‘the largest s for which 7* divides x * % to be defined primitive recursively sO

©,)

asln() ve its dsual meaning if x is a multiple of 3. The function (x) is to be defined by the equations 8 (0) = 0,8 (x + 1) = 1. It is easily verified
that the functions so defined have the desired properties. We shall now show that questions as to the truth of statements of form ‘does f (x) vanish
. o each oot it Tk e cotomtaton oF a0 5 S and thar e s sotishod that U sle s yald L. et the machine whch shouid calomtave (1) s
; in each case the rule for culation x) is given and that one is saf at this rule is valid, i.e. the machine which should calculate (x) is
4 Ian desz ’1 ed t}’ e er e('t con’ ll ter circle free (Turing [1], 232). The functionfés) be]%g computable is general recursive in the Herbrand-Gddel sense, and therefore by a general theorem
- due to Kleen® [31,727. *Suppose f(x,,....x,), g (x,,....x), h (x,,...x,) are primitive recursive then ¢ (x,,....x) is primitive recursive if it is defined
by one of the sets of equations :a)—%f:a o@x,... ,Jf) =’h(x1,...,x 18Xy X)y XX %), (L<m < n); 5(1) ("v'"v"n) =f(x,....x,); (¢) ¢ (x,) = a,

where 7= 1 and a is some 5 (x)=x, n=1);©) ¢ x4, x ,0)=F (XX); O XX X+ 1) =h(x,.. X, (x,..x)).

h 1 d i i d 1- Wi 1 1 1 n-l»6 1 1 1 n1’"n 1 ht 1 n 1 n I“M

Church-Turing thesis (modern interpretation). A TM can perform any computation (decide a language or

compute a function) that can be described by any physically realizable computing device.

Spring 2012, Question 8 and Fall 2012, Question 9

For any language that some TM decides,

there exists a DFA that recognizes the same language.

For any language that some RE describes,
there exists a TM that decides the same language.

For any function that some TM computes, there exists
a Java program that computes the same function.

Most computer scientists believe that the Church-
Turing thesis will eventually be proved true.

No future computer can solve the halting problem.

TRUE

O

O

FALSE

O

O

UNKNOWN

O

O

13

ALL QUESTIONS THEORY

COMPUTER » P, NP, NP-complete
S CIENCE

http://introcs.cs.princeton.edu

http://intros.cs.princeton.edu

Big ideas (polynomial time vs. exponential time)

Polynomial-time algorithm. Running time <an? for all inputs of size n.

Exponential-time algorithm. Running time = 2" for infinitely many inputs.

/

or 1.1Ym or n!

Relevance. “Efficient in practice.”

fime

1024T —

512T —

exponential

64T —

8T —

AT -

2T —

size — 1K 2K 4K 8K 1024K
Orders of growth (log—log plot)

15

Polynomial time vs. exponential time

Classify each algorithm.

mergesort
(to sort an array of n elements)

insertion sort
(to sort an array of n elements)

recursive H-tree program
(to draw an H-tree of order n)

smallest increase heuristic
(to build a TSP tour of n points)

brute-force TSP algorithm
(that tries all n! permutations)

POLYNOMIAL

O

o O O O

EXPONENTIAL

O

o O O O

16

Big ideas (search problems)

Search problem. There exists a poly-time algorithm that checks whether a given solution solves

a given instance of the problem.
FACTOR. Given an n-digit integer x, find a factor (other than 1 and x).

Q. How to show that FACTOR is a search problem?
A. Given a purported factor d, need a poly-time algorithm to check that
 dis not equal to1 or x.

e dis a divisor of x.

AN

grade-school division is n?
(faster algorithms are known)

@tance. x = 305753 \

Factor? d =31

Q34673

3|S%05753

279

ﬂ

263573

A4 8
1aS3
1 B

S

\k sl)

17

Big ideas (search problems)

Search problem. There exists a poly-time algorithm that checks whether a given solution solves

a given instance of the problem.

TSP. Given n points in the plane and an integer L, find a tour of length at most L.

\ distance between two points

Q. How to show that TSP is a search problem? is Euclidean distance,

A. Given a purported tour x, need a poly-time algorithm to verify that rounded to the nearest inch
 xis atour (i.e, a permutation of the n points).

* The length of x is at most L.

18

Big ideas (P vs. NP)

NP. The set of all search problems.

NP
P. The set of all search problems that can be solved in polynomial time.
Relevance. NP contains problems that we aspire to solve in practice; @
P contains problems that we can solve in practice.
P = NP intractable
C . . : : : : h bl
Definition. A problem is intractable if there exists no poly-time algorithm to solve it. SEarell PropiEms
Famous conjecture. P+ NP [There exist intractable search problems]
no intractable
search problems
P = NP

19

Fall 2014, Question 8

TSP is in NP.

Every problem in P is also in NP.

Every problem in NP is also in P.

Every problem in NP can be solved with an exponential-time algorithm.

The halting problem is in NP.

If P= NP, then there exists a poly-time algorithm for FACTOR.

TRUE

O

o O O O O

FALSE

O

o O O O O

UNKNOWN

O

o O O O O

20

Big ideas (poly-time reductions)

Definition. A problem A poly-time reduces to a problem B if there exists an algorithm for A that uses a

polynomial number of calls to a subroutine for B, plus polynomial time outside of those subroutine calls.

Instance a Algorithm

(of A) - to solve B solution to a

Algorithm to solve A

A poly-time reduces to B
(A can be solved by B)

Intuition. Can solve B efficiently = can also solve A efficiently.

Contrapositive. Can’t solve A efficiently = can’t solve B efficiently either.

Definition. A search problem B is NP-complete if every search problem A poly-time reduces to B.

Spring 2015, Question 5a

Suppose that problem A poly-time reduces to problem B. Which of the following statements can we infer?
TRUE FALSE

If Bis in P, then A is in P. O O
If Ais in P, then B is in P.
If A is NP-complete, then Bis NP-complete.

If A is NP-complete and B is in NP, then B is NP-complete.

o O O O
o O O O

A and B cannot both be NP-complete.

