1. Data types.

(a) A data type is a set of values and operations on those values.

<table>
<thead>
<tr>
<th>Java expression</th>
<th>type</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r.length()</td>
<td>int</td>
<td>5</td>
</tr>
<tr>
<td>r.charAt(r.length())</td>
<td>run-time exception</td>
<td></td>
</tr>
<tr>
<td>(t == u)</td>
<td>boolean</td>
<td>false</td>
</tr>
<tr>
<td>u.equals(t)</td>
<td>boolean</td>
<td>true</td>
</tr>
<tr>
<td>r.substring(0, r.length())</td>
<td>String</td>
<td>"Hello"</td>
</tr>
</tbody>
</table>

2. Scientific computation.

(a) (ii)
(b) 1/2, 3/4, 1, 123

3. Linked structures.

I and III only

4. Data type design.

(a) Y declaring instance variables to be private
N declaring instance variables to be immutable
 no such access modifier in Java
Y declaring instance variables to be final
Y defensively copying instance variables
N overloading instance methods
 a feature of Java methods, but not related to immutability

(b) double[] Tour Stack<String> GuitarString
5. Analysis of algorithms.

 (a) \(N^2 \)

 (b) \(240 = 15 \times 4^2 \)

 (c) \(8N^2 \)

 ![Symbol Table Diagram]

7. Regular expressions.

 ii (i matches \(aA \); iii matches \(Aa \); iv doesn’t match \(a \))

8. Theory of computation.

 (a) B There exists a mathematical function that can be computed in Java, but cannot be computed on a Turing machine.

 D There exists a mathematical function that can be computed in polynomial time on a quantum computer, but cannot be computed in polynomial time on a Turing machine. *Assume that quantum computers can be built.*

 B There exists a mathematical function that can be computed in polynomial time in Java, but cannot be computed in polynomial time on a Turing machine.

 A There exists a Universal Turing machine that can simulate the behavior of any other Turing machine.

 A. known to be true

 B. known to be false

 C. if true would falsify the Church-Turing thesis

 D. if true would falsify the extended Church-Turing thesis

 E. if true would prove the Church-Turing thesis
(b) D Not all search problems can be solved in polynomial time.

A There exists a search problem that can be solved in polynomial time.

C Both FACTOR and 3-Sat can be solved in polynomial time.

B Exactly one of 3-Sat and Tsp can be solved in polynomial time.

(a)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

(b) $X'Y'Z' + X'YZ' + XY'Z + XYZ$

(c) $2^{(N+1)/2}$

There is one entry in the truth table (and an N-input AND gate) for each N-bit palindrome. For odd N, the first $(N + 1)/2$ bits can be 0 or 1; the last $(N - 1)/2$ bits equal the reverse of the first $(N - 1)/2$ bits.