
COS 126 Programming Exam 2

This exam is like a mini programming assignment. You will have 50 minutes to create
two programs. Debug your code as needed. You may use your book, your notes, your
code from programming assignments, the code on the COS 126 course website, the
booksite, and you may read Piazza. No form of communication is permitted (e.g.,
talking, email, IM, texting, cell phones) during the exam.

Downloads. Before you begin (now), download templates for your code and input data
files, as instructed for Programming Exam 2 on the COS126 Exams page.

Submissions. Submit your programs via the course website using the submit links as
instructed for Programming Exam 2 on the COS126 Exams page. Submit Part 1 before
attempting Part 2. You will lose a substantial number of points if you do not follow the
submission instructions precisely.

Grading. Your program will be graded on correctness, clarity (including comments),
design, and efficiency. You will lose a substantial number of points if your program does
not compile or does not have the proper API, or if it crashes on typical inputs.

Discussing this exam. As you know, discussing the contents of this exam before
solutions have been posted is a serious violation of the Honor Code.

Programming Exam: Finite Language Class

Part 1. Develop a class Language for processing finite formal languages, supporting union,
concatenation, and n-closure.

Definitions. A language is a set of strings. A set is a collection of elements where no two
elements are equal; we provide a class SET.java that enforces this property. The union of
two languages is the set of all strings that are in either or both of the two languages. The
concatenation of two languages is the set of all strings that can be formed by appending a
string from the second language to a string from the first language. The n-closure of a
language is the set of all strings that can be formed by concatenating n strings from the
language. Here are some examples, using RE notation:

union: a|abc = { a, abc }  
concatenation:(b|bc|bcd)(cd|d) = { bccd, bcd, bcdcd, bcdd, bd }  
2-closure: (e|ef){2} = { ee, eef, efe, efef }

Your task. Make sure that you have downloaded the files Language.java and SET.java as
per the online instructions. Language.java is a client of the SET data type, which takes care
of maintaining sets of distinct elements (adding a string to a set of strings that is already
contains that string has no effect, as desired). Add code to Language.java as indicated
within the file to implement the concatenate() method and the closure() method. We
have provided implementations of the constructors and the union() and toString()
method to help you get started.

Example. Note that Language.java has a main() client to test your methods by printing
out the strings in the languages a|abc, (b|bc|bcd)(cd|d) and (e|ef){2}. Your program
must behave as follows (the strings on each line can be in any order):

% java-introcs Language  
 a abc  
 bccd bcd bcdcd bcdd bd  
 ee eef efe efef

Note that the string bcd appears only once in the second language, even though it can be
formed either by concatenating b and cd or by concatenating bc and d.

Restrictions. Also as indicated within the file, you must use only a single instance variable
language which is final. In other words, your Language class has to be immutable—the
invoking Language object cannot change during a union, concatenate, or closure operation.

Hint 1. To implement these methods, you will need to use Java’s for-each loop. See the
provided toString() and union() methods for examples of using a for-each loop with
SET<String>.

Hint 2. There are many methods in SET.java but the only ones you will need to use for this
exam are: the constructor, the add() method, and for-each loops (see Hint 1).

SUBMIT Language.java AS INSTRUCTED ON THE COVER PAGE. 

Part 2. Write a language client PostfixL.java with a single method main() that simulates
a stack machine that takes commands from standard input to create languages.

Your task. Recall from Lecture 12 that the stack client Postfix.java simulates a stack
machine that evaluates arithmetic expressions. Your program will operate in a very similar
manner. Make sure that you have downloaded the file Stack.java as per the online
instructions. Create an empty stack of Language objects, then use StdIn.readString() to
read strings from standard input one at a time, until the standard input string is empty. For
each string, respond as follows:
• If the string is "UNION" pop the top two languages and push their union.
• If the string is "CONCATENATE" pop the top two languages and push their concatenation.
• If the string is "CLOSURE" read an integer n, pop the top language and push its n-closure.
• If the string is "PRINT" pop the top language and print its strings.
• Otherwise, create a new language consisting of the string and push it onto the stack.

You may assume that the input is well-formed (you do not need to check for errors in the
input).

Example. Suppose that the input is the file testPostfixL.txt:
a abc UNION PRINT  
b bc bcd UNION UNION cd d UNION CONCATENATE PRINT  
e ef UNION CLOSURE 2 PRINT

For this input, your program must behave as follows:
% java-introcs PostfixL < testPostfixL.txt  
 a abc  
 bccd bcd bcdcd bcdd bd  
 ee eef efe efef

You may wish to test your program on your more complicated test cases, as we certainly
will.  
 
Note 1. Make sure that you use the equals() method in String rather than == to test
whether two String values are the same sequence of character values.

Note 2. Make sure that you get the operands in the proper order for the concatenate
operation. The second-to-top language is the first operand and the top language is the
second operand.

SUBMIT PostfixL.java AS INSTRUCTED ON THE COVER PAGE.

Food for thought. Why not just use an array as the underlying data structure? The answer
to this question is that the cost of removing duplicates would be prohibitive for large
languages, and SET efficiently implements this important functionality. Also, with SET, we
can provide clients with an efficient implementation of the operation of checking whether a
given string is in the language.

