
COS 126 Midterm 2 Programming Exam Fall 2012

is part of your exam is like a mini-programming assignment. You will create two programs,
compile them, and run them on your laptop, debugging as needed. is exam is open book, open
browser—but only our course website and booksite! Of course, no internal or external
communication is permitted (e.g., talking, email, IM, texting, cell phones) during the exam. You
may use code from your assignments or code found on the COS126 website. When you are done,
submit your program via the course website using the submit link for Precept Exam 2 on the
Assignments page.

Grading. Your program will be graded on correctness, clarity (including comments), design, and
efficiency. You will lose a substantial number of points if your program does not compile or if it
crashes on typical inputs.

Even though you will electronically submit your code, you must turn in this paper so that we have
a record that you took the exam and signed the Honor Code. Print your name, login ID, and
precept number on this page (now), and write out and sign the Honor Code pledge before turning
in this paper. Note: It is a violation of the Honor Code to discuss this midterm exam question with
anyone until aer everyone in the class has taken the exam. You have 90 minutes to complete the
test.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Signature

Part 1A /10

Part 1B /10

Part 2 /10

TOTAL /30

NAME:! ! login id:!
! ! Precept:

Your task in this exam is to simulate one-dimensional cellular automata, a simple model of
computation that has (amazingly) been proven Turing-equivalent (these machines are as
powerful as Turing machines).

Description. You may have heard of Conway’s game of life, which is a two-dimensional cellular
automaton. A one-dimensional cellular automaton is an array of cells that are either on or off
whose states all change each time the machine steps. e changes are governed by a set of rules
that depend on the states of each cell and its immediately adjacent neighbors. So that every cell
has a le neighbor and a right neighbor, we de%ne an imaginary cell to the le of the lemost cell
and an imaginary cell to the right of the rightmost cell, both of which are always off. For
simplicity we use 1 to represent on and 0 to represent off, so that we can use a 3-bit string to
represent the states of each cell and its neighbors (with the state of the cell of interest in the
middle). Since each cell and each of its two neighbors are either on or off, there are eight possible
cases to consider, and we can represent rules with an eight-character string, by specifying the new
value for the state of the middle cell for each possibility. For example, the following table explains
the meaning of the rules string "01001000" .

rules string index 0 1 2 3 4 5 6 7

le middle right 000 001 010 011 100 101 110 111

new middle 0 1 0 0 1 0 0 0

Each column in the table (and each character in the rules string) determines a cell’s new state: the
3-bit string representing its old state and the old states of its neighbors is used as the binary
representation of the column index, and the new state of that cell is the entry of the rules string at
that index. In a step, all cells change independently and simultaneously. For example, suppose
that we have an 11-state machine. According to these rules, if the state of the machine is

0 0 1 1 1 0 1 0 0 1 0 0 0

then it will change to

0 1 0 0 0 0 0 1 1 0 1 0 0

aer the next step. e %rst cell changes to 1 because it is in the middle of a 001 pattern; the next
cell changes to 0 because it is in the middle of a 011 pattern; and so forth. Be sure that you
understand how this machine works before reading further. Here are the next few steps:

0 0 1 0 0 0 1 0 0 0 0 1 0
0 1 0 1 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0

2

Part 1A (10 points). First, write a skeleton class CA that implements the following API:

public class CA

CA(int N, String rules)
create a (2N+1) state automaton

based on the given rules

void step() simulate one step of the automaton

String toString()
return a string representation
of the current state of each cell

e constructor should save the argument values in instance variables and construct a one-
dimensional array named cells of int values that will represent the state of the automaton
(each cell is 0 for off and 1 for on). To keep things symmetric, build an automaton with 2N+1
states, so that cells should have 2N+3 entries, to include the dummy cells at the ends. To get
things started, initialize the center cell to on. e toString() method should return a string of
length 2N+1 with spaces corresponding to off cells and 1s corresponding to on cells (and
excluding the dummy cells). e step() method is Part 1B; for now, implement that as

public void step() { }

then implement a main() test client that takes N and rules from the command line and runs
the machine for N steps, printing initial state and the state of the automaton aer every step. To
be sure your output is correct, you might start with your toString() method outputting 0’s
instead of spaces. is should produce the following result:

% java CA 5 01001000
00000100000
00000100000
00000100000
00000100000
00000100000
00000100000

Nothing happens because step() does nothing, but now you can implement step() without
having to worry about all this other code.

Before moving on, remember to change the "0" in toString() to a blank, so that we only see
the on states in the output.

You do not need to submit this code separately, but be sure to follow the submission instructions at
the bottom of the next page, whether or not you get Part 1B working.

3

Part 1B (10 points). Next, implement the step() method for CA. is requires:

• Creating a temporary array.

• Setting every entry of that array to the new value dictated by the rules.

• Using that array to set the new state of the machine.

e key to the simulation is to compute an int value index that indicates which rule should be
applied. For example, if cells[i-1] is 1, cells[i] is 0, and cells[i+1] is 0, then your
program should compute the value 4 for index and check whether the %h character in the rule
string is 0 or 1.

Don’t forget to make sure that you use the dummy values at the end of the array to compute new
values but that you never change those dummy values.

If your program works correctly, you'll see that it produces the Sierpinksi triangle for the
"01001000" rules and amazing patterns for others, such as the "01111000" rules illustrated at
right.

% java CA 15 01001000 % java CA 15 01111000
 1 1
 1 1 111
 1 1 11 1
 1 1 1 1 11 1111
 1 1 11 1 1
 1 1 1 1 11 1111 111
 1 1 1 1 11 1 1 1
 1 1 1 1 1 1 1 1 11 1111 111111
 1 1 11 1 111 1
 1 1 1 1 11 1111 11 1 111
 1 1 1 1 11 1 1 1111 11 1
 1 1 1 1 1 1 1 1 11 1111 11 1 1 1111
 1 1 1 1 11 1 111 11 11 1 1
 1 1 1 1 1 1 1 1 11 1111 11 111 111 11 111
 1 1 1 1 1 1 1 1 11 1 1 111 1 111 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 11 1 1 11111 1111111

Submission. Submit the %le CA.java via Dropbox at
https://dropbox.cs.princeton.edu/COS126_F2012/Exam2

(is is the submit link for Precept Exam 2 Part 1 on the Assignments page.) Be sure to click the
Check All Submitted Files button to verify your submission.

Grading. Your program will be graded on correctness and clarity (including comments).

4

https://dropbox.cs.princeton.edu/COS126_S2011/Exam1
https://dropbox.cs.princeton.edu/COS126_S2011/Exam1

Part 2 (10 points). Be sure that you have successfully completed both Part 1A and Part 1B and have
submitted CA.java before attempting this part of the exam, which counts for fewer points (and
which you won’t easily be able to test without a working solution to Part 1).

Next, implement a CA client PictureCA that visualizes the operation of larger automata. Your
program must proceed as follows:

• Create a CA with N=255. It will have 511 cells.

• Build a 511-by-256 Picture with pixel (i, j) set to Color.WHITE if cell i is off aer step j,
Color.BLACK otherwise.

• Show the picture.

Don’t forget to import java.awt.Color at the beginning of your program.

You program should produce the following images:

% java PictureCA 01001000 % java PictureCA 01111000

Now that you're done with the exam, you can enjoy playing with other rules strings and look
around on the web for other remarkable facts about cellular automata (including the fact that the
one on the right can compute anything a Turing machine can compute)!

Submission. Submit the single %le PictureCA.java via Dropbox at

https://dropbox.cs.princeton.edu/COS126_F2012/Exam2

(is is the submit link for Precept Exam 2 Part 2 on the Assignments page.) Again, be sure to
click the Check All Submitted Files button to verify your submission.

Grading. Your program will be graded on correctness and clarity (including comments).

5

https://dropbox.cs.princeton.edu/COS126_S2011/Exam1
https://dropbox.cs.princeton.edu/COS126_S2011/Exam1

