
NAME: login id:

 Precept:

COS 126 Midterm 2 Programming Exam Fall 2011

This part of the exam is like a mini-programming assignment. You will write code, compile it,

download test data for it and run it on your laptop. Debug it as needed. This exam is open book,

open browser—but only our course website and booksite! Of course, no internal or external

communication is permitted (e.g., talking, email, IM, texting, cell phones) during the exam. You

may use code from your assignments or code found on the COS126 website. When you are done,

submit your program via the course website using the submit link for Precept Exam 2 on the

Assignments page.

Grading. Your program will be graded on correctness, clarity (including comments), design, and

efficiency. You will lose a substantial number of points if your program does not compile or if it

crashes on typical inputs.

Even though you will electronically submit your code, you must turn in this paper so that we

have a record that you took the exam and signed the Honor Code. Print your name, login ID, and

precept number on this page (now), and write out and sign the Honor Code pledge before turning

in this paper. Note: It is a violation of the Honor Code to discuss this midterm exam question

with anyone until after everyone in the class has taken the exam. You have 50 minutes to

complete the test.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Signature

Part 1A /10

Part 1B /12

Part 2 /8

TOTAL /30

Your task in this exam is to implement a (very) simple model for computing cellphone coverage.

Given data describing a set of cellphone towers in a state that happens to be a perfect square, you

will visualize (in Part 1) and compute (in Part 2) the percentage of the state that is covered.

The description below assumes that you have downloaded the Picture and generic Queue

implementations from the booksite, as instructed. If not, you should do so now.

http://introcs.cs.princeton.edu/java/31datatype/Picture.java

http://introcs.cs.princeton.edu/java/43stack/Queue.java

Part 1A (10 points). First, write a simple class Tower that implements the following API:

public class Tower

 Tower(double x, double y, double r)

boolean

double

double

double

inRange(double x0, double y0)

getX()

getY()

getR()

The constructor should simply save the argument values in instance variables.

The inRange() method for a Tower built with the values x, y, and r should return true if the

specified point is within range of the tower (strictly within the circle of radius r centered at (x,

y)), false otherwise. To compute the distance between (x1, y1) and (x2, y2), take the square root

of the quantity (x2−x1)
2
 + (y2−y1)

2
, as usual.

The accessor methods getX(),getY() and getR()should return the x-coordinate of the

tower, the y-coordinate of the tower, and the range (radius) of the tower, respectively.

Note. Do not forget to use the keyword “this” if your instance variables have the same name as

the arguments passed to the constructor or method.

Note. Do not worry if you do not use your accessor methods in the client code for Parts 1B and 2.

http://introcs.cs.princeton.edu/java/31datatype/Picture.java
http://introcs.cs.princeton.edu/java/43stack/Queue.java

Part 1B (12 points). Next, implement a Tower and Queue client CoveragePicture that

visualizes the coverage for a set of towers on the unit square. Assume that the tower data is on

standard input, three double values per line (x, y, and r in that order).

Your program must proceed as follows:

• Create an empty queue of towers and a blank 512-by-512 Picture. (Note. The default

color for a blank picture is black.)

• Read the data from standard input and fill the queue with the towers specified by the data.

• Build the 512-by-512 Picture with pixel (i, j) set to Color.WHITE if the point

(i/512, 1-j/512) is not within the range of any tower, Color.BLACK otherwise.

• Show the picture.

Don’t forget to import java.awt.Color at the beginning of your program.

To test your program, download our test files

http://introcs.cs.princeton.edu/data/2towers.txt

http://introcs.cs.princeton.edu/data/5towers.txt

http://introcs.cs.princeton.edu/data/100towers.txt

and run them to produce the images below.

2towers.txt 5towers.txt 100towers.txt

Submission. Submit the two files Tower.java and CoveragePicture.java via Dropbox at

https://dropbox.cs.princeton.edu/COS126_F2011/Exam2

(This is the submit link for Precept Exam 2 on the Assignments page.) Be sure to click the Check

All Submitted Files button to verify your submission.

Grading. Your program will be graded on correctness and clarity (including comments) and on

your success in structuring the program as specified.

After you have submitted Tower.java and CoveragePicture.java, go on to Part 2.

http://introcs.cs.princeton.edu/data/2towers.txt
http://introcs.cs.princeton.edu/data/5towers.txt
http://introcs.cs.princeton.edu/data/100towers.txt
https://dropbox.cs.princeton.edu/COS126_F2011/Exam2

Part 2 (8 points). Be sure that you have successfully completed both Part 1A and Part 1B and

have submitted Tower.java and CoveragePicture.java before attempting this part of the

exam (which may take longer and counts for less than half as many points).

Write a Tower client Coverage that takes a double value T from the command line and

estimates the percentage coverage of the unit square by sampling each point in a T-by-T uniform

grid of points, counting the number of points that are within range of some tower in the set of

towers on standard input, and dividing by the total number of points.

For example, for 2towers.txt, the circles are of radius .2 and .3 and do not overlap, so the

percentage coverage is

π(.2)
2

+ π(.3)
2
 ≈ 0.4084070449666731

and you are estimating that number. Output your estimate printed to one decimal place followed

by “per cent coverage” as shown in the example below:

% java Coverage 1200 < 2towers.txt

40.8 per cent coverage

For 5towers.txt and 100towers.txt, the overlap makes the exact coverage difficult to

compute, so sampling is a practical alternative:

% java Coverage 1200 < 5towers.txt

58.2 per cent coverage

% java Coverage 1200 < 100towers.txt

62.8 per cent coverage

Submission. Submit the single file Coverage.java via Dropbox at

https://dropbox.cs.princeton.edu/COS126_F2011/Exam2

(This is the submit link for Precept Exam 2 on the Assignments page.) Again, be sure to click the

Check All Submitted Files button to verify your submission.

Grading. Your program will be graded on correctness and clarity (including comments).

https://dropbox.cs.princeton.edu/COS126_F2011/Exam2

