
ZNN - Fast and Scalable Algorithm for 3D
ConvNets on Multi-Core and Many-Core Shared

Memory Machines
Aleksandar Zlateski

Massachusetts Institute of Technology
Cambridge, MA

zlateski@mit.edu

Kisuk Lee
Massachusetts Institute of Technology

Cambridge, MA
kisuklee@mit.edu

H. Sebastian Seung
Princeton University

Princeton, NJ
sseung@princeton.edu

Abstract—Convolutional networks (ConvNets) have become
a popular approach to computer vision. It is important to
accelerate ConvNet training, which is computationally costly. We
propose a novel parallel algorithm based on decomposition into
a set of tasks, most of which are convolutions or FFTs. Applying
Brent’s theorem to the task dependency graph implies that linear
speedup with the number of processors is attainable within
the PRAM model of parallel computation, for wide network
architectures. To attain such performance on real shared-memory
machines, our algorithm computes convolutions converging on
the same node of the network with temporal locality to reduce
cache misses, and sums the convergent convolution outputs via
an almost wait-free concurrent method to reduce time spent in
critical sections. We implement the algorithm with a publicly
available software package called ZNN. Benchmarking with
multi-core CPUs shows that ZNN can attain speedup roughly
equal to the number of physical cores, for machines with up to
40 cores. We also show that ZNN can attain over 90x speedup on
a many-core CPU (Xeon PhiTMKnights Corner). These speedups
are achieved for network architectures with widths that are in
common use. The task parallelism of the ZNN algorithm is suited
to CPUs, while the SIMD parallelism of previous algorithms is
compatible with GPUs. Through examples, we show that ZNN
can be either faster or slower than certain GPU implementations
depending on specifics of the network architecture, filter sizes,
and density and size of the output patch. ZNN may be less costly
to develop and maintain, due to the relative ease of general-
purpose CPU programming.

TODO: Maybe add a sentence about how ZNN can work on
arbitrary topology networks, bah

TODO: Don’t like up to 40 cores (that’s how much we have
tested, ZNN will work for more cores)

I. INTRODUCTION

I will introduce myself!

A. Backpropagation

A standard formulation of supervised learning starts with
a parametrized class of mappings, a training set of desired
input-output pairs, and a loss function measuring deviation of
actual output from desired output. The goal of learning is to
minimize the average loss over the training set. A popular
minimization method is stochastic gradient descent. For each
input in sequence, the parameters of the mapping are updated
in minus the direction of the gradient of the loss with respect
to the parameters.

(a) (b)

Fig. 1: Standard (a) representation of a ConvNet and Con-
vNet’s computation graph (b). Red edges represent convolu-
tions.

Here we are concerned with a class of mappings known as
a convolutional network (ConvNet).

II. COMPUTATION GRAPH

We define a ConvNet using a directed acyclic graph (DAG),
called the computation graph (Fig. 1). Each node represents
a 3D image, and each edge some filtering operation on a 3D
image. (2D images are a special case in which one of the
dimensions has size one.) The possible filtering operations are:
• Convolution
• Max-pooling
• Max-filtering
• Transfer function

If multiple edges converge on a node, the node sums the
outputs of the filtering operations represented by the edges.
For convenience, the discussion below will assume that images
and kernels have isotropic dimensions, though this restriction
is not necessary for ZNN.

Convolution A weighted linear combination of voxels
within a sliding window is computed for each location of

Pass Pooling Filtering Non-linearity
Forward f · n3 f · 3n3 log k f · n3

Backward f · n3 f · n3 f · n3

Update − − f · n3

TABLE I: Complexities of pooling, filtering and non-linearity
operations.

the window in the image. The set of weights of the linear
combination is called the kernel. If the input image has size
n3 and the kernel has size k3, then the output image has size
n′3 = (n − k + 1)3. Image size decreases because an output
voxel only exists when the sliding window is fully contained
in the input image. (This is known as a valid convolution in
MATLAB.) The convolution is allowed to be sparse, meaning
that only every sth image voxel within the sliding window
enters the linear combination.

Max-pooling divides an image of size n3 into blocks of
size p3, where n is divisible by p. The maximum value is
computed for each block, yielding an image of size (n/p)3.

Max-filtering The maximum within a sliding window is
computed for each location of the window in the image. For
a sliding window of size p3, max-filtering yields an image of
size (n− p+ 1)3. The reduction in image size is the same as
in convolution.

Transfer function adds a number called the bias to each
voxel of the image and then applies a nonlinear function
to the result. The nonlinear function is typically monotone
nondecreasing. Common choices are the logistic function, the
hyperbolic tangent and commonly used rectify linear function.

The computational complexities of max-pooling, max-
filtering, and transfer function are shown in Table I. Convolu-
tion is more expensive, and its complexity will be discussed
later.

Although ZNN works for a general computation graph, Con-
vNets in common use typically have the following properties:
• Convergent edges in the graph are convolutions; a sole

incoming edge to a node is a nonlinear filtering operation.
• Nodes with convergent edges are not adjacent in the

graph, but are separated from each other by nonlinear
filtering edges. This is a reasonable constraint, because a
composition of two convolutions can be collapsed into a
single convolution, thereby simplifying the graph.

• The graph has a layered organization in which all edges
in a layer represent operations of the same type.

A. Sliding window max-pooling ConvNet

A max-pooling ConvNet in the context of visual object
recognition is a special case of the definition given above.
Max-filtering is not used, and the input image is transformed
into an output image consisting of a single pixel/voxel.

In a context where localization and detection are desired
in addition to recognition, one can slide a window over a
large image, and apply the max-pooling ConvNet at each
location of the window [1]. However, it is computationally
wasteful to literally implement the computation in this way.
It turns out to be more efficient to implement a sliding

Convolution Convolution

Max-Pool

Convolution

Max-Filter

Sparse Convolution

Fig. 2: Sliding window max-pooling ConvNet vs max-filtering
ConvNet with sparse convolution

window max-pooling ConvNet using a max-filtering ConvNet.
Each max-filtering increases the sparsity of all subsequent
convolutions by a factor equal to the size of the max-filtering
window. This approach has been called skip-kernels [1] or
filter rarefaction [2], and is equivalent in its results to max-
fragmentation-pooling [3], [4].

ZNN is more general, as the sparsity of convolution need not
increase in lock step with max-filtering, but can be controlled
independently.

Why is this useful? Patch training?

III. BACKPROPAGATION LEARNING

The trainable parameters in a ConvNet are the kernels and
biases. We will refer to these parameters as the weights, as they
enter into weighted linear combinations. The backpropagation
algorithm is a way of calculating the gradient of the loss
function with respect to the weights. For each input, the
calculation proceeds in several phases:

1) Obtain an input and desired output from the training set.
2) Forward pass - compute the actual output of the ConvNet

from the input image.
3) Compute the gradient of the loss function with respect to

the actual output.
4) Backward pass - Compute the gradient of the loss func-

tion with respect to the voxels of the output image at each
node.

5) Weight update - Compute the gradient of the loss function
with respect to the kernels and biases, and update these
parameters in the direction of minus the gradient.

The forward pass has already been described above. ZNN
implements several possibilities for the loss function, such as
the Euclidean distance between the actual and desired outputs.

A. Backward pass

The starting point of the backward pass is the gradient of the
loss function with respect to the voxels of the output node. The
backward pass computes the gradient of the loss function with
respect to the voxels of the images at the rest of the nodes. It
turns out that the backward pass can be represented by another
graph that looks the same as the forward computation graph,
except that the direction of every edge is reversed.

Every edge in the backward computation graph is multipli-
cation by the Jacobian matrix of the operation represented by
the corresponding edge in the forward computation graph.

Convolution Convolution in the forward pass becomes con-
volution in the backward pass. The kernel is the same, except
that it is reflected along all three dimensions. Reflecting an N -
dimensional image along all dimensions is easily implemented
through a one-dimensional flipping of the memory used by
the image. Alternatively, one could store one bit of metadata
(regular or flipped) about the state of the image.

If the input image has size n3 and the kernel has size k3,
then the output image has size n′3 = (n + k − 1)3. Image
size increases because an output voxel exists whenever the
sliding window has some overlap with the input image. (This
is known as a full convolution in MATLAB.)

Max-pooling Within each block, all voxels are zeroed out
except for the one that was identified as the maximum within
that block in the forward pass. An image of size n3 is expanded
into an image of size n3p3.

Max-filtering need description here
Transfer function Every voxel is multiplied by the deriva-

tive of the transfer function for the corresponding voxel in the
forward pass.

B. Weight update

For a convolution going from node a to node b in the
forward computation graph, the gradient of the loss with
respect to the kernel is computed by convolving the reflected
image at node a in the forward pass with the image at node
b in the backward pass. A valid convolution is performed.

For a bias at node a, the gradient of the loss is calculated as
the sum of all elements in the image at node a in the backward
pass.

IV. DIRECT VS. FFT CONVOLUTION

When the kernel sizes are large, the computational com-
plexity of a single convolution can be reduced via FFT
techniques [5], [6]. In the case of a layered network, the
complexity of a fully connected convolutional layer with f
input feature maps and f ′ output feature maps, for both direct
and FFT-based convolution, are shown in the first two columns
of Table II.1

Further optimization can be achieved by caching the FFTs
of images and kernels obtained during the forward pass for
reuse during the backward pass and weight update. In this
case when computing the gradients we only need to calculate
the FFT transform of the loss with respect to the output that
is flipped in all dimensions, and reuse the value for both the
backward and update phase.

The complexities of the three phases with FFT caching
optimization are shown in the third column of the Table II.
This method requires more memory but reduces computational
complexity by approximately a third compared to the ones
proposed in [5], [6].

1 Note that our values differ from the ones in [5] as we have carefully ex-
amined the difference in complexity between full and valid convolutions

V. TASK DECOMPOSITION

The edges of the ConvNet’s computation graph represent
computation, whereas the nodes accumulate the results of their
incident edges. For each edge type we introduce up to three
different task types. All edge types will have a task for forward
and backward pass computation. The edges with trainable
parameters (convolutions and transfer functions) will also have
a separate task for the update phase.

A. Task types

Forward The forward task of an edge e = (u, v) is the
application of some operation e.FORWARD-TRANSFORM to a
3D image accumulated in u, and addition of the resulting 3D
image to the sum being accumulated by v.

Backward The backward task of an edge e = (u, v) is the
application of some operation e.BACKWARD-TRANSFORM to
a 3D image accumulated in v, and addition of the resulting
3D image to the sum being accumulated by u.

Update An update task exists only for an edge e = (u, v)
with trainable parameters (kernel in the case of convolution
or bias in the case of transfer function). The task alters the
trainable parameters based on the images at u and v.

Training sample There are additional two training sam-
ple tasks. One task obtains a training sample used for a single
round of training, and the other one calculates the gradient of
the loss with respect to the network output.

B. Task dependency graph

A task can be executed when all the data required for its
execution has been computed. The forward task of an edge e =
(u, v) depends on forward pass tasks of all edges (w, u) ∈ E.
The backward task of the same edge depends on the backward
task of all edges (v, w) ∈ E. Finally the update task of an edge
depends on both forward and backward tasks of the same edge.
Additionally, if there was a backward pass executed before the
current forward pass, the forward pass task of e also depends
on the previous update task of e.

Figure 3 shows the task dependency graph of the network
shown in Figure 1. The bottom part of the graph contains tasks
of a forward pass, whereas the top part contains the tasks of
the previous backward pass. The topmost dark red circle nodes
represent the tasks that calculate the gradient of the loss with
respect to the output of the network obtained in the previous
forward pass. The yellow circle in the middle represents the
task generating the input sample for the current forward pass.
Note that there are no update tasks for pooling/filtering. The
task dependency graph represents tasks required to execute
steps 3− 5 of the training procedure followed by steps 1 and
2 of the next round. (explain that this is better for analysis?)

C. Theoretically achievable speedup

We estimate the theoretically achievable speedup on dif-
ferent number of processors by analyzing layered networks
where every convolutional layer is fully connected. Assuming
one floating point instruction per time-step (cycle), we first
estimate time required to perform one round of training on

Pass Direct FFT-based FFT-based (Cached)
Forward f ′ · f · n′3 · k3 3Cn3 logn[f ′ + f + f ′ · f] + 4f ′ · f · n3 3Cn3 logn[f ′ + f + f ′ · f] + 4f ′ · f · n3

Backward f ′ · f · n′3 · k3 3Cn3 logn[f ′ + f + f ′ · f] + 4f ′ · f · n3 3Cn3 logn[f ′ + f] + 4f ′ · f · n3

Update f ′ · f · n′3 · k3 3Cn3 logn[f ′ + f + f ′ · f] + 4f ′ · f · n3 3Cn3 logn[f ′ · f] + 4f ′ · f · n3

Total 3f ′ · f · n′3 · k3 9Cn3 logn[f ′ + f + f ′ · f] + 12f ′ · f · n3 6Cn3 logn[f ′ + f + f ′ · f] + 12f ′ · f · n3

TABLE II: Computational complexity of a fully connected convolutional layer

Edge type COMPUTE-FORWARD COMPUTE-BACKWARD COMPUTE-UPDATE

Convolution xout = xin ∗V w ∂L
∂xin

= ∂L
∂xout ∗F wF ∂L

∂w
= (xin)F ∗V ∂L

∂xout

Transfer function xout = σ(xin + b) ∂L
∂xin

= ∂L
∂xout

∂σ
∂xin

∂L
∂b

=
∑
i,j,k

∂L
∂xout

(i,j,k)

Max/Min Pooling xout
(i,j,k)

= min(p,q,r)∈W xin
(p,q,r)

6Cn3 logn+ 4n3 3Cn3 logn+ 4n3

Filtering 3n′3 · k3 + n′3dlog2 fe+ n3dlog2 f ′e 18Cn3 logn+ 4n3[1 + dlog2 fe+ dlog2 f ′e] 12Cn3 logn+ 4n3[1 + dlog2 fe+ dlog2 f ′e]

TABLE III: Caption.

Fig. 3: Task dependency graph of the ConvNet in Figure 1
The tasks are color/shape coded. The square shape represents a backward type task, a circle represents a forward type task,
and a diamond represents an update task. The green color represents a non-linearity task (transfer function), the red color

represents convolution task and blue represents pooling/filtering task.

an infinite number of processors available, by estimating the
time required for the forward and backward passes as well as
the update phase for each layer type of the network. For the
analysis we use the same notation as in the previous section.

In the fully connected convolutional layer, when using direct
convolution, all f · f ′ convolutions can be done at the same
time and take n′3 · k3 time-steps. Each of f ′ output nodes
then accumulate results of f convolutions which can be done
in n3dlog2 fe time per output node2; and all the output nodes
can be done in parallel, giving us total of n′3 ·k3+n′3dlog2 fe.
With analogous analysis we get that the time required for the
backward pass of the layer equals to n′3 · k3 + n3dlog2 f ′e.
During the update phase, all the updates can be done in parallel
and require total of n′3 · k3 time-steps. In the case of FFT-
based convolution, the FFTs of the input feature maps and all
the filters can be done at the same time in 3Cn3 log n time-
steps. The FFT of the output feature map is then obtained
by accumulating point-wise products of the FFT of the input
feature map with the FFT of the appropriate filter, taking

2Using the algorithm described in [7]

4n3dlog2 fe time-steps. We can then compute the inverse FFT
of all the output feature maps in 3Cn3 log n time-steps. The
analysis for the backward pass is equivalent, requiring exact
amount of time to perform as the forward pass. For the update
phase we can compute the FFTs of the input feature maps
and the gradients of the loss with respect to the outputs at
the same time in 3Cn3 log n time-steps. In the case we have
cached these values, no computation is necessary. For each
edge we can compute the point-wise product of the two at the
same time in 4n3, and finally compute the inverse transforms
of the results in another 3Cn3 log n time-steps.

The total time required for the first convolutional layer in
the network then equals to the sum of the time required for
the forward and the backward pass plus the time required
for the update phase. The total time required for all other
convolutional layers equals to the sum of the time required for
the forward and backward pass, as all the update computation
can be done at the same time as the update computation is done
for the first layer. All times required for a fully convolutional
layer are shown in Table IV.

Network width

0 20 40 60 80 100 120

A
c
h
ie

v
a
b
le

 S
p
e
e
d
u

p

0

20

40

60

80

100

120

6 CPUs

18 CPUs

40 CPUs

60 CPUs

120 CPUs

(a)
Network width

0 20 40 60 80 100 120

A
c
h
ie

v
a
b
le

 S
p
e
e
d
u

p

0

20

40

60

80

100

120

6 CPUs

18 CPUs

40 CPUs

60 CPUs

120 CPUs

(b)

Fig. 4: Achieavle speedup of a ConvNet using (a) direct
convolution (b) FFT-based convolution with caching enabled.

Applying the transfer function in each of f nodes in a
layer can be done at the same time, as well as computing
the gradient of the loss with respect to the input and the bias.
This gives us total of n3 time-steps required for computing
the forward pass, backward pass and the update phase for the
whole layer. Again the total time required by the first layer in
the network is 3n3, and the time for all other layers is 2n3 as
the update phase can be done at the same time as the update
is being computed for the first such layer.

The pooling/filtering layers have the same number of input
feature maps and output feature maps. All pulling/filtering
operations can be done at the same time for both forward
and backward pass. The Table V shows time-steps required
for transfer functions and pooling/filtering layers.

Summing up the times required for each layer of a network
from Tables II and I gives us T1 - the time required for
performing a single round of training in serial fashion (on a
single processor); summing up the times from Tables IV and V
gives us T∞ - the time required to compute one round of
training on an infinite amount of processors available.

We can estimate theoretically achievable speedup on P
available processors by using Brent’s theorem [7].

TP ≤ T∞ +
T1 − T∞

P
(1)

Let SP be speedup achieved using P processors, Sp = T1

TP
.

SP ≥
S∞

1 + S∞−1
P

(2)

As the computation is dominated by the fully connected
convolutional layers, we can roughly estimate T1

T∞
≈ O(f2).

We can saturate P processors with networks whose width is
approximately equal to

√
P which means that we can get high

utilization for networks with very modest widths. We show the
plot of exactly computed theoretically achievable speedup for
networks of different width and height in Figure 4.

VI. TASK SCHEDULING

Assuming no synchronization and communication overhead,
Brent’s theorem gives us the lower bound on the time required
to perform a single pass of network training. We see that
achievable speedup depends mostly on network width, and

Pass Pooling Filtering Non-linearity
Forward n3 3n3 log k n3

Backward n3 n3 n3

Update − − n3

Total First − − 3n3

Total Other − − 2n3

TABLE V: Time required to perform different operations on
a full layer with infinite number of processors available.

less on network depth, and that a high degree of utilization is
achievable.

In order to achieve the predicted performance we design
our algorithm such that we minimize any synchronization
overhead and increase temporal locality of computation in
order to reduce cache misses.

The central quantity in our algorithm is a global priority
queue that contains tasks that are ready to be executed together
with their priority. A predetermined number of workers will
then execute the tasks from the global queue.

A. Priority queue

Tasks are placed on a global queue when all non-update
dependencies are satisfied. The only tasks with update task
as requirements are forward tasks. The rationale behind this
design choice is that if a forward task is scheduled for
execution without the required update task being done, we
will force execution of the update task followed by the forward
task that requires the result of the update, hence increase the
memory locality.

The tasks on the queue are sorted by priority. We chose the
priorities in such a way to increase the temporal locality of
the computation and minimize the latency of the computation.
We introduce two unique strict orderings of the nodes in the
ConvNet’s computation graph based on the longest distance,
in decreasing order, to any output and input node respectively.
Nodes with the same distance will be ordered in some unique
way. The priority of the forward task of an edge e = (u, v)
will be equal to position of the output node v in the ordering
based on the distance to the output nodes, and similarly the
priority of the backward task will equal to the ordering of u
based on the distance to the input nodes. This ensures that
we prioritize tasks with the longest path to a sink node in the
task dependency graph and hence minimize latency. The strict
ordering of the tasks with the same distance increases temporal
locality by assuring that when multiple tasks with the same
distance are scheduled we prefer to execute ones computing
3D images that have to be accumulated in the same sum, thus
increasing the probabiltiy of the memory accessed being in
the cache.

The update tasks will have the lowest priority of all tasks.
Their execution will be forced when their result is required for
the forward pass, which increases cache locality as the result
will be used immediately. The only other time the update tasks
will be executed is if there’s no other forward or backward
tasks ready to be executed.

Pass Direct FFT-based FFT-based (Cached)
Forward n′3 · k3 + n′3dlog2 fe 6Cn3 logn+ 4n3dlog2 fe 6Cn3 logn+ 4n3dlog2 fe
Backward n′3 · k3 + n3dlog2 f ′e 6Cn3 logn+ 4n3dlog2 f ′e 6Cn3 logn+ 4n3dlog2 f ′e
Update n′3 · k3 6Cn3 logn+ 4n3 3Cn3 logn+ 4n3

Total First 3n′3 · k3 + n′3dlog2 fe+ n3dlog2 f ′e 18Cn3 logn+ 4n3[1 + dlog2 fe+ dlog2 f ′e] 12Cn3 logn+ 4n3[1 + dlog2 fe+ dlog2 f ′e]
Total Other 2n′3 · k3 + n′3dlog2 fe+ n3dlog2 f ′e 12Cn3 logn+ 4n3[dlog2 fe+ dlog2 f ′e] 12Cn3 logn+ 4n3[dlog2 fe+ dlog2 f ′e]

TABLE IV: Time required to perform different operations on fully connected convolutional layers with infinite number of
processors available.

B. Worker loop

The tasks are executed by N workers, where N is ex-
perimentally determined, and as shown below, in most cases
N should equal the number of virtual cores available. Each
worker picks up and executes a task with the highest priority
on the queue.

Forward tasks When forward tasks are scheduled for
execution the worker first checks the state of the required
update task, which can be one of the following:

1) Pending, in which case the update task is in the queue
waiting to be executed. In this case the worker removes
the task from the queue, executes the update task followed
by the scheduled forward task.

2) Completed, the worker then just executes the forward
task pass.

3) Executing, in this case, some other worker is currently
executing the update task. The current worker attaches
the scheduled forward task to be executed by the worker
currently executing the update task upon completion of
the update task. The current worker then just picks up
the next task from the queue.

In the first two cases, upon the completion of executing the
forward task, the worker will check whether there are more
tasks with all-but update tasks satisfied, and will insert them
to the queue.

Algorithm 1 Forward Task algorithm

DO-FORWARD(e = (u, v), x)

1 xout = e.FORWARD-TRANSFORM(x)
2 if ADD-TO-SUM(v.sum, xout)
3 y = GET-SUM(v.sum)
4 for e′ ∈ v.out-edges
5 t = MAKE-FORWARD-TASK(e′, y)
6 ENQUEUE(e′.fwd priority , t)

EXECUTE-FORWARD-TASK(e, x)

1 t = TASK(DOFORWARD(e, x))
2 FORCE(e.update task , t)

Backward tasks The worker just executes the backward
task and inserts the update task to the queue if necessary.

Update tasks The worker executes the task, and upon
completion checks whether some other worker had attached
a forward task to be executed. If there is an attached forward

Algorithm 2 Backward task algorithm.

EXECUTE-BACKWARD(e = (u, v), dLdF)

1 dLdX = e.COMPUTE-GRADIENT(dLdF)
2 if e.trainable
3 e.update-task = TASK(UPDATE(e, dLdF))
4 ENQUEUE(lowest priority , e.update task)
5 v = e.vout

6 if v.add backward(dLdX)
7 for e′ ∈ v.in edges
8 y = v.get backward sum()
9 t = TASK(BACKWARD(e′, y))

10 ENQUEUE(e′.bwd priority , t)

task, the worker executes it and checks whether there are more
tasks to be placed on the queue.

Algorithm 3 Update task algorithm.

UPDATE(e, dLdF)

1 dLdB = e...
2 e.b = ADVANCE(e, dLdB)

C. Synchronization issues

Minimize critical sections, the code that can be executed by
a single thread at the time. The main three points in the algo-
rithm that require synchronization are memory management
(allocation/deallocation), operations on the global task queue
and concurrent summations.

1) Queue operations: The operations on the global task
priority queue have to be synchronized. The global queue is
implemented as a heap of lists lowering the complexity of
insertion and deletion from logN to logK, where N is the
total number of tasks in the queue and K is the number of
distinct values for the priority of the tasks inside the queue.
Depending on the network structure, this number can be much
smaller than the total number of tasks in the queue.

2) Wait-free concurrent summation: Multiple tasks that are
being executed in parallel might need to add their result to
the same accumulated sum. The additions to the sum have to
be synchronized - only one thread/task is allowed to change
the sum. A simple strategy to wait until all other threads have
finished updating the sum can yield large performance degra-
dation as summing large 3D images can be a time consuming

operation. To minimize the synchronization time we decide to
only manipulate the pointer to the currently accumulated sum.
The method CONCURRENT-SUM in Algorithm 4 describes the
procedure of adding values of a 3D image pointed to by v to
an accumulated sum. The idea is to grab the pointer to the sum
inside the critical section (lines 5-11). If the pointer equals NIL
we set it to the pointer provided that contains the values to be
added to the sum. Otherwise we set the pointer to the sum to
NIL and then add the values of the accumulated sum to the
values of the image to be added to the sum outside the critical
section. We then repeat trying to add the increased values to
the sum in the same fashion.

Algorithm 4 Wait-free concurrent summation algorithm

ADD-TO-SUM(S, v)

1 v′ = NIL
2 last = FALSE
3 repeat
4 ACQUIRE(S. lock)
5 if S.sum = = NIL
6 S.sum = v
7 v = NIL
8 S. total = S. total + 1
9 last = (S. total == S.required)

10 else v′ = S.sum
11 S.sum = NIL
12 RELEASE(S. lock)
13 if v = = NIL
14 return last
15 else ADD-TO(v, v′) // v = v + v′

16 until

GET-SUM(S)

1 v′ = S.sum
2 S.sum = NIL
3 S.total = 0
4 return v′

3) Memory management: In order to minimize the syn-
chronization time during memory allocation and de-allocation
ZNN implements two custom memory allocators, trading
speed for some memory usage overhead. One is dedicated
to 3D images, which are usually large, and the other one is
dedicated to small objects used in auxiliary data structures.
Both allocators maintain 32 global pools of memory chunks.
Each pool i, i ∈ 0 . . . 31 contains chunks of sizes of 2i.
Lock-free queues, as described in [8] and implemented as
a part of the boost [9] library are used to implement the pool
operations. The only difference between the allocators is the
memory alignment - the 3D image memory allocator ensures
proper memory alignment for utilizing SIMD instructions. No
memory is shared between the two allocators.

When a chunk of memory of size s is requested, first s is
rounded up to the nearest power of 2. The appropriate pool is

CPU Frequency Cores/Threads
Intel R© XeonTM E5-2666 v3 2.9 GHz 8 cores/16 threads
Intel R© XeonTM E5-2666 v3 2.9 GHz 18 cores/36 threads
Intel R© XeonTM E7-4850 2.0 GHz 40 cores/80 threads 4

Intel R©Xeon PhiTM5110P 1.053 GHz 60 cores/240 threads 5

TABLE VI: Machines used for the experiments

examined for available memory chunks. If there’s an available
chunk we return it and remove it from the pool. If no chunks
are available we allocate one from the system and return it.

When de-allocating a chunk memory, it is simply added to
the appropriate pool, and no memory is ever returned to the
system. This means that the memory usage of our program can
never decrease. In practice, as the ConvNet training consist of
a single loop performing the same work, our memory usage
peaks after a few rounds.

In the worst case this strategy can lead to 2× memory usage
overhead; however the available memory to the CPU is rarely
a limiting factor in training a network. In future, we might
consider implementing more advanced memory allocators,
such as ones with thread-local pools in addition to the global
pool, or ones with higher granularity of available chunk sizes
to reduce the size overhead.

Using jemalloc [10], [11] for small object allocation yields
similar performance with a bit less overhead, however we
decide to use our own implementation as a default one, in
order to minimize the number of dependencies and make the
code more portable.

VII. MEASUREMENTS

To evaluate the efficiency and usability of the proposed algo-
rithm, we pursue the answers to the following two questions:

1) What is the scalability of the parallel algorithm - how
does the speed scale with depending on the number of
available processors.

2) How does ZNN’s performance compare to the current
state of the art implementations of ConvNets.

To answer the first question we benchmark the speed
of training networks with different structures on different
multi-core and many-core systems and compare the achieved
speedup to the serial algorithm. We used 8 and 18 core readily
available machines on Amazon Web Services (AWS) as well
as a 40 core 4-way CPU system and a Xeon PhiTMKnights
Corner. We have used Intel compiler (version 15.0.2) with Intel
MKL (version 11.2) libraries for FFTs and direct convolution.
The list of machines used is shown in Table VI3.

We obtain part of the answer to the second question by
comparing ZNN’s performance to the publicly available im-
plementation of ConvNets. ZNN is the first publicly available
implementation optimized for CPUs, and that supports 3D +
sliding window output... yada yada.... we add this later when
we figure out what we will compare to.

3The 8 and 18 core machines correspond to AWS instances c4.4xlarge and
c4.8xlarge

We also mention that ZNN has less limitations so we can
only compare a subset of ZNNs abilities to the ones currently
available. Mention that ZNN can do arbitrary graphs, sliding
window, multiscale, etc...

A. Scalability

To measure the scalability of our algorithm we have bench-
marked 2D and 3D ConvNets of different widths. The 2D
networks are implemented by setting one of the dimensions
to be one. They had 8 layers, with layers 2 and 4 being
pooling layers with a window of size 2 × 2 and other layers
being convolutional layers with the kernel size of 11×11. We
measure the speed of patch training evaluated on the sliding
window with the output size being 48× 48. The 2D networks
had only 6 layers with two pooling layers (2 and 4) and 3
convolutional layers with the filter size of 3× 3× 3. The 2D
networks use FFT based convolution whereas the 3D networks
use direct convolution. We chose to present these networks in
order to cover wider range of possible settings for the network;
however using deeper 3D networks or changing the FFT based
convolution with direct or vice versa, as well as changing the
filter sizes yields very similar results.

We have used different numbers of worker threads for
networks of different width. Figure 5 shows the obtained
results. Different lines correspond to networks of different
width. For the desktop CPUs we observe the linear increase
in speed up to the number of cores, then linear increase with a
lower slope up to the number of virtual threads. As predicted
by Brent’s law, the networks have to be wide enough in order
to achieve high efficiency. The peak efficiency is reached for
networks of width 20 on all desktop processors. The results
for Xeon PhiTMshow linear increase until the number of virtual
cores then linear increase with a lower slope until double that
number. For networks wide enough the speed still increases
up to the number of hardware threads 6.

The maximal achieved speedups for a networks of different
widths are shown in Figure 7.

B. GPU comparison

In order to compare the ZNN’s performance versus the state
of the art GPU implementation we benchmark modern pooling
networks. We decide on a modest network width of 40 and
vary the sizes of the filters as well as the size of the output
patch. As there is no publicly available GPU implementation
that can work with dense output, all our comparisons are done
for sparse output patch. ZNN is executed on an 18 core AWS
machine and the GPU implementations are using the Titan X.

For the 2D networks we benchmark ZNN against caffe [12],
both the default implementation and an implementation us-
ing cudnn [13] as well as the default implementation of
theano [14] implementations. For 3D we only use theano, as
the official release of caffe still doesn’t support 3D ConvNets.
We have carefully optimized the speed measuring code for the

6Xeon PhiTMhas hardware threads which differ from virtual thread tech-
nology of the desktop XeonTMprocessors

Network width

0 20 40 60 80 100 120

A
c
h
ie

v
e
d
 s

p
e
e
d
u
p

0

20

40

60

80

100

8 Core Intel Xeon E5-2666

18 Core Intel Xeon E5-2666

40 Core Intel Xeon i7-5820K

Intel Xeon Phi 5110P

Fig. 7: Achieved speedups on a 2D network compared to
the serial algorithm. Absolute speeds can be obtained by
multiplying the speedup with the speeds of the serial algorithm
which are X,Y,Z,W updates/sec for 8, 18 and 40 core Xeon
CPUs and Xeon Phi respectively.

Network width

0 20 40 60 80 100 120

A
c
h
ie

v
e
d
 s

p
e
e
d
u
p

0

20

40

60

80

100

8 Core Intel Xeon E5-2666

18 Core Intel Xeon E5-2666

40 Core Intel Xeon i7-5820K

Intel Xeon Phi 5110P

Fig. 8: Achieved speedups on a 3D network compared to the
serial algorithm.

GPU implementations, and made it publicly available in the
ZNN’s repository.

The comparison of 2D ConvNets is shown in Figure 9 and
on 3D ConvNets in Figure 10. The relative performances of
ZNN increases with the increasing output patch size. For the
2D networks and filter sizes of 20×20 ZNN performances are
comparable to the ones of Caffe using cuDNN. For filter sizes
of 30× 30 ZNN already performs slightly better both Theano
and Caffe. And for the filter sizes of 40× 40 ZNN performs
two times faster than the next fastest implementation. Note
that some data is missing for Caffe; in those cases Caffe was
not able to handle the network of given size. For 3D ConvNets
ZNN achieves comparable performance even for modest filter
sizes of 5× 5× 5 and outperforms Theano for filter sizes of
7× 7× 7.

ZNN might not seem very competative for 2D networks as
very large filters are not that common. However, until recently

Number of threads

0 50 100 150 200 250

A
c
h
ie

v
e
d
 S

p
e

e
d
u
p

1

2

3

4

5

6

7

8

9

10

(a)
Number of threads

0 50 100 150 200 250

A
c
h
ie

v
e
d
 S

p
e

e
d
u
p

0

5

10

15

20

25

(b)
Number of threads

0 50 100 150 200 250

A
c
h
ie

v
e
d
 S

p
e

e
d
u
p

0

5

10

15

20

25

30

35

40

45

(c)
Number of threads

0 50 100 150 200 250

A
c
h
ie

v
e
d
 S

p
e

e
d
u
p

0

20

40

60

80

100

(d)

Fig. 5: 2D networks scalability. Bottom-up the different lines correspond to networks of widths
5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120

Number of threads

0 50 100 150 200 250

A
c
h
ie

v
e
d
 S

p
e
e
d
u
p

1

2

3

4

5

6

7

8

9

10

(a)
Number of threads

0 50 100 150 200 250

A
c
h
ie

v
e
d
 S

p
e
e
d
u
p

0

5

10

15

20

25

(b)
Number of threads

0 50 100 150 200 250
A

c
h
ie

v
e
d
 S

p
e
e
d
u
p

0

5

10

15

20

25

30

35

40

45

(c)
Number of threads

0 50 100 150 200 250

A
c
h
ie

v
e
d
 S

p
e
e
d
u
p

0

20

40

60

80

100

(d)

Fig. 6: 3D network scalability

Output Size
1x1 2x2 4x4 8x8 16x16 32x32 64x64

F
ilt

e
r

1
0
x
1
0

0

0.1

0.2

0.3

0.4

ZNN
Caffe
Caffe (cuDNN)
Theano

Output Size
1x1 2x2 4x4 8x8 16x16 32x32 64x64

F
ilt

e
r

2
0
x
2
0

0

0.2

0.4

0.6

0.8

Output Size
1x1 2x2 4x4 8x8 16x16 32x32 64x64

F
ilt

e
r

3
0
x
3
0

0

0.5

1

1.5

2

2.5

Output Size
1x1 2x2 4x4 8x8 16x16 32x32 64x64

F
ilt

e
r

4
0
x
4
0

0

2

4

6

Fig. 9: Comparison of ZNN, Caffe and Theano for 2D Con-
vNets.

training networks with such large filters was impratical. Using
networks with large filters might became more common in
future, and such networks can be efficiently trained with ZNN.
On the other, for 3D ConvNets ZNN is very competitive even
for modest sizes and commonly used filter sizes. Reference
Nature paper with 7x7x7 filter sizes?

Aside from speed the other limiting factor in training deep
ConvNets Theano was not able to train networks with larger
filter sizes. The memory usage of network with filter sizes
of 7 × 7 × 7 ranged from 5.8 to 11.3 GB depending on the
output patch size. Titan X has only 12 GB of RAM available
which is usually much less than the memory available to the
CPU required by ZNN, and until recently GPUs had even

Output Size
1x1x1 2x2x2 4x4x4 6x6x6 8x8x8

F
ilt

e
r

3
x
3
x
3

0

0.05

0.1

0.15

0.2

0.25

ZNN

Theano

Output Size
1x1x1 2x2x2 4x4x4 6x6x6 8x8x8

F
ilt

e
r

5
x
5
x
5

0

0.2

0.4

0.6

0.8

Output Size
1x1x1 2x2x2 4x4x4 6x6x6 8x8x8

F
ilt

e
r

7
x
7
x
7

0

0.5

1

1.5

2

2.5

3

Fig. 10: Comparison of ZNN and Theano for 3D ConvNets.

less memory. ZNN, hence, allows for training of much larger
networks.

Even though ZNN is not meant to be direct competitior to
the GPU implementation, but rather a more flexible framework
allowing for (more stuff like multi scale dense output, etc..)
we see that ZNN has comparable performance on commonly
used networks of modest sizes.

VIII. RESULTS

This is where we maybe add results obtained by using ZNN.
Maybe try to use multiscale functionality? Not sure what is
the best approach here - kisuk?

A. Implementation Details

ZNN is implemented in C++ and is publicly available under
XXX license https://github.com/zlateski/znn-release Uses fftw
or intel MKL for FFT and either provided naive code or intel
MKL for direct convolution.

The modular design of ZNN allows for easy replacement of
different parts of the algorithm. ZNN also provides different
scheduling strategies such as simple FIFO or LIFO as well as
more complex ones based on work stealing [15]. The alter-
native scheduling strategies perform 10-20% worse than the
one proposed in the paper for most networks. However some
very specific networks can benefit from alternative scheduling
algorithms. Future work can include automatic detection of
the best scheduling strategy.

IX. RELATED WORK

GPU [12], [16], [14]. FFT [5], [6]. Sliding window [4], [3],
[1]. Distributed networks [17].

One attempt [18] to improve neural nets on Xeon PhiTM.

X. CONCLUSIONS

Draft below:
ZNN’s design allows for easy addition of new types of

layers. Adding additional features to the existent GPU frame-
works requires tedious SIMD programming. GPU implemen-
tations are mostly improve the performances on the specific
types of networks, and limit the users to batch training.

ZNN focuses on enabling research of new types of net-
works. The generic programming model and task based par-
allelism allow for the users to easily add new features by
providing a serial algorithm, and ZNN will take care of
efficiently training the network on a multi-core machine.

To our knowledge ZNN is the first publicly available
ConvNet package to support sliding window and multiscale
networks.

REFERENCES

[1] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-
Cun, “Overfeat: Integrated recognition, localization and detection using
convolutional networks,” arXiv preprint arXiv:1312.6229, 2013.

[2] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” arXiv preprint arXiv:1411.4038, 2014.

[3] A. Giusti, D. C. Cireşan, J. Masci, L. M. Gambardella, and J. Schmidhu-
ber, “Fast image scanning with deep max-pooling convolutional neural
networks,” arXiv preprint arXiv:1302.1700, 2013.

[4] J. Masci, A. Giusti, D. Ciresan, G. Fricout, and J. Schmidhuber,
“A fast learning algorithm for image segmentation with max-pooling
convolutional networks,” in Image Processing (ICIP), 2013 20th IEEE
International Conference on, pp. 2713–2717, IEEE, 2013.

[5] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional
networks through ffts,” in International Conference on Learning Repre-
sentations (ICLR2014), CBLS, April 2014.

[6] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and
Y. LeCun, “Fast convolutional nets with fbfft: A gpu performance
evaluation,” arXiv preprint arXiv:1412.7580, 2014.

[7] J. Gustafson, “Brents theorem,” in Encyclopedia of Parallel Computing
(D. Padua, ed.), pp. 182–185, Springer US, 2011.

[8] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms,” in Proceedings
of the fifteenth annual ACM symposium on Principles of distributed
computing, pp. 267–275, ACM, 1996.

[9] T. Blechmann, “Boost lockfree library.”
http://www.boost.org/libs/lockfree/, 2008.

[10] J. Evans, “A scalable concurrent malloc (3) implementation for freebsd,”
in Proc. of the BSDCan Conference, Ottawa, Canada, 2006.

[11] J. Evans, “Scalable memory allocation using jemalloc.”
https://www.facebook.com/notes/facebook-engineering/scalable-
memory-allocation-using-jemalloc/480222803919, 2011.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the ACM International
Conference on Multimedia, pp. 675–678, ACM, 2014.

[13] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[14] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a cpu
and gpu math expression compiler,” in Proceedings of the Python for
scientific computing conference (SciPy), vol. 4, p. 3, Austin, TX, 2010.

[15] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” Journal of the ACM (JACM), vol. 46, no. 5,
pp. 720–748, 1999.

[16] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-
like environment for machine learning,” in BigLearn, NIPS Workshop,
no. EPFL-CONF-192376, 2011.

[17] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le, et al., “Large scale distributed deep
networks,” in Advances in Neural Information Processing Systems,
pp. 1223–1231, 2012.

[18] L. Jin, Z. Wang, R. Gu, C. Yuan, and Y. Huang, “Training large scale
deep neural networks on the intel xeon phi many-core coprocessor,”
in Proceedings of the 2014 IEEE International Parallel & Distributed
Processing Symposium Workshops, IPDPSW ’14, (Washington, DC,
USA), pp. 1622–1630, IEEE Computer Society, 2014.

https://github.com/zlateski/znn-release

	Introduction
	Backpropagation

	Computation graph
	Sliding window max-pooling ConvNet

	Backpropagation learning
	Backward pass
	Weight update

	Direct vs. FFT convolution
	Task decomposition
	Task types
	Task dependency graph
	Theoretically achievable speedup

	Task scheduling
	Priority queue
	Worker loop
	Synchronization issues
	Queue operations
	Wait-free concurrent summation
	Memory management

	Measurements
	Scalability
	GPU comparison

	Results
	Implementation Details

	Related work
	Conclusions
	References

