
THEORETICAL MACHINE LEARNING COS 511

LECTURE #9 MARCH 1, 2016

LECTURER: ELAD HAZAN SCRIBE: VLADIMIR FEINBERG

In the following, let ∆n be the n-dimensional simplex. Let δi be the i-th standard vector. For vectors x,
xi = δ>i x denotes the i-th element. OCO stands for online convex optimization. Let [n] = Z ∩ [1, n].

1 Betting with an Edge

Suppose we play a game: we start with $1, and we may wager some proportion of it by betting that a fair
coin comes up heads - if it does, we win three times our wager, else we lose our bet. Let us work under the
assumption that we want to maximize our expected wealth.

1.1 One Iteration

With initial wealth W0, if we bet a proportion p ∈ ∆1 of our wealth, in case of loss we have (1− p)W0 and
in case of a win we have (1 − p)W0 + 3pW0. Then the expectation for our wealth after a single game W1

is given by E(W1) = (1− p)W0 + 3pW0/2 = (1 + p/2)W0. To maximize our expected returns, it is clear
that we should wager all our money, p = 1.

1.2 Over Time

Betting over several (T) iterations, our intuitions tell us that this fact may no longer be true - the probability
that we leave with any positive amount of money if p = 1 is 2−T .

Let us suppose at every time t we indeed bet a constant proportion p of our wealth. We may give a
heuristic proof justification to this strategy by recursion; suppose an optimal strategy modifies pt over time;
this is independent of the initial amount of wealth since we always make returns as a factor of our starting
capital. After one iteration of the game played with p1, we find ourselves in a situation where we must
maximize our capital yet again. It must be that re-applying the optimal strategy from t = 2 must also yield
the best result at time T + 1. For any sensible metric of evaluating our performance f and large T , f(WT)
is maximized when f(WT+1) is; in turn we find that playing with probability p1 every time is sure to be just
as good as the time-dependent strategy pt.

Define Wt to be the rv for our wealth after game t. We set W0 = 1, and have by the same reasoning as
before E (Wt|Wt−1) = (1+p/2)Wt−1. We see at this point that inductively E(WT) = (1+p/2)TW0. This
suggests we should set p = 1 as before. However, if we reframe the problem, we find a surprising result.

1.3 Kelly Criterion

Theorem 1.1. If W p
t is the rv for the game played with probability p, then ∃p∗ such that as T → ∞,

P
(
W p∗

T > W p
T

)
= 1 for any other p.

We note that p∗ < 1 since it is less than any other strategy with probability 1 as T →∞ andW p
T > 0 for

any p < 1. Also, p∗ > 0 by Markov’s inequality: E(W 0
T /W

p
T) = (1 + p/2)−T . Kelly (or rather, Bernoulli,

1

earlier on) showed that such a p∗ satisfies:

p∗ = argmax
p∈∆1

E
(

log
W p

T

W0

)
= argmax

p∈∆1

E

(
1

T
log

T∏
t=1

W p
t

W p
t−1

)
= argmax

p∈∆1

E (logG)

Where we notice G is the geometric mean of the returns.

2 Portfolio Extension

We can extend this to n independent bets to simulate the behaviour of a portfolio, which contains n assets.
We define the return rt = pt+1/pt, where pt is the price of the asset at day t. We summarize rt ∈ Rn

+.
We bet a proportion of our wealth in each asset at the beginning of day t, pt ∈ ∆n, by investing pi fully

liquid and infinitely-sized stock. The rv for our wealth at the beginning of day t is then given by:

Wt = r>t ptWt−1

One may wonder why we must invest all our money in the assets - perhaps one would like to withdraw
money from the markets. By introducing an asset with rt = 1, we may reduce this scenario to the fully-
invested option, with money withheld being equivalent to investment in a constant-return asset.

2.1 Intuition for Kelly Criterion

Example 2.1. Let us take an example where n = 2. Let rt =
(
at bt

)>, where:

at =

{
2 t even
1
2 o/w

bt =

{
1/3 t even
2 o/w

Here, we see that investment in only one of the stocks is not helpful. Having pt = δ1 leads to no change in
wealth, and pt = δ2 results in a 33% loss of wealth every two days.

On the other hand, playing pt = 1
2(δ1 + δ2) gives a alternating returns of 7

6 and 5
4 .

From this we see that there may be a way to gain money with uncorrelated asset performance for a
market that has average increasing returns.

2.2 Application of Kelly Criterion

Many financial models, such as Black-Scholes, make an assumption about the stochastic process {rt}.
Indeed, taking {rt} to be n independent geometric Brownian motion processes, a similar optimal p∗ exists
satisfying the same condition as before.

This p-based strategy, where every day one invests the same proportion of one’s wealth into the set
of assets, is called a constantly rebalancing portfolio strategy. The reason for this name is that even though
pt = p remains constant, the quantity of wealth in each asset every day may change because of the difference
in relative pricing of each asset on the next day.

2

3 OCO Framework for Portfolio Selection

If we instead don’t make any assumptions about rt, we can still aim to minimize WT /W0 compared to best
single p∗ in hindsight.

If we choose to invest pt at time t, with
∏

t =
∏T

t=1, then

WT

W0
=
∏
t

r>t pt

In this multiplicative setting, it would seem natural to maximize our performance relative to the optimal
portfolio in hindsight, p∗, where W p∗

T /W1 =
∏

t r>t p∗.We seek to make more money than the optimal
portfolio, up to some sublinear factors:

WT /W0

W p∗
T /W0

≥ e−o(T)

The factor on the right may seem peculiar; it implies that the geometric mean of our returns tends to perform
at least as well as geometric mean of the optimal portfolio. Recall this matches the objective of the Kelly
criterion, which optimizes expected log wealth, an equivalent formulation.

Taking logarithms we are met with a familiar regret construction (let
∑

t =
∑T

t=1):∑
t

log r>t pt − max
p∈∆n

∑
t

log r>t p ≥ −o(T)

Indeed; multiplying throughout by −1 and observing that the negative logarithm is convex, we have
an OCO formulation. Unfortunately, we cannot directly apply online gradient descent to this problem: the
gradient is not bounded; take r = 1 and p = εδ1 + (1− ε)δ2, with ε→ 0+.

3.1 Cover’s Algorithm

Definition 3.1. Let wt
p =

∏t
n=1 r>n p. Let

∫
p =

∫
p∈∆n

and w0
p = 1. Then choose our portfolio based on the

following (Cover’s algorithm):

pt =

∫
p
wt−1

p p
/∫

p
wt−1

p

Note the left term is a vectorized integral. Unfortunately, this integral is not tractable. We perform a
discretization to accuracy k−1. Define ∆k

n = {p ∈ ∆n | pi ∈ N/k} to compute integrals. Note
∣∣∆k

n

∣∣ =
O(kn) (proven by induction on n).

Take p∗ to be argmaxp∈∆n

∑
t log r>t p (unique by concavity). From here on, let

∑
p =

∑
p∈∆k

n
.

Lemma 3.2. Taking the strategy pt as defined by Cover’s algorithm, WT /W1 =
∣∣∆k

n

∣∣−1∑
p wp

With t > 1 we have:

r>t pt = r>t

∑
p w

t−1
p p∑

p w
t−1
p

=

∑
p w

t−1
p r>t p∑

p w
t−1
p

=

∑
p w

t
p∑

p w
t−1
p

Then it follows by a telescoping product and the definition wp = wT
p that:

WT

W1
=
∏
t

r>t pt =
∏
t

∑
p w

t
p∑

p w
t−1
p

=

∑
p w

T
p∑

p w
0
p

=
∣∣∣∆k

n

∣∣∣−1∑
p
wp

We will also require another observation; that quantifies the error caused by our discretization.

3

Lemma 3.3. There exists a single p† ∈ ∆k
n such that for any t ∈ [T], log

r>t p
r>t p∗ ≥ −k

−1.

By the discretization, there must exist a p† ∈ ∆k
n such that p† = p∗ + ε, where ‖ε‖∞ < k−1. Since

r>t ε ≥ −‖rt‖‖ε‖ and r>t p∗ ≤ ‖rt‖‖p∗‖ by Cauchy-Schwarz, we have:

log
r>t p†

r>t p∗
≥ log

(
1 +

r>t ε
r>t p∗

)
≥ log

(
1− ‖rt‖‖ε‖
‖rt‖‖p∗‖

)
Then, observe ‖ε‖2 ≤ nk−2 and that ‖p∗‖2 ≥ infp∈∆n‖p‖2 ≥ ‖1/n‖2 = n. Replacing these inequalities
above, we have that the original logarithm is at least log(1 − k−1) ≥ −k−1 (we may drop the remaining
series since they alternate).

Theorem 3.4. Cover’s algorithm provides a solution to sublinear regret of log returns.

We start with the definition of regret:

log
WT

W1
−
∑
t

log r>t p∗ ≥ log
∑

p
wp −

∑
t

log r>t p∗ − log
∣∣∣∆k

n

∣∣∣ Lemma 3.2

≥ max
p∈∆n

logwp −
∑
t

log r>t p∗ − log
∣∣∣∆k

n

∣∣∣ a, b ∈ R+, log(a+ b) > log a

≥ max
p

∑
t

log r>t p−
∑
t

log r>t p∗ − log
∣∣∣∆k

n

∣∣∣ def. of wp

≥ max
p

∑
t

log
r>t p
r>t p∗

− log
∣∣∣∆k

n

∣∣∣
≥
∑
t

log
r>t p†

r>t p∗
− log

∣∣∣∆k
n

∣∣∣
≥ −T/k −O(n log k) Lemma 3.3

≥ −O(n log T) = o(T) choice of k = T 2

4

