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Last lecture, we introduced the multi-armed bandit problem, or learning with partial information. We are
motivated now to examine problems exponential in the number of decisions.

1 FKM Algorithm for BCO

Below we outline the FKM algorithm introduced last lecture, also known as “Gradient Descent without the
Gradient”.

Algorithm 1 FKM
1: procedure
2: Set x1 ∈ K arbitrary
3: for t = 1, 2, ... to T do
4: yt = xt + δu, u ∼ Sn the sphere uniformly
5: Play yt, suffer loss ft(yt)
6: Update xt+1 =

∏
Kδ

[xt − ∇̃t], ∇̃t = n
δ ft(yt) · u

7: end for
8: end procedure

To see the intuition behind FKM, recall that E[∇̃t] = ∇f̂ δt (xt) as explained in Lecture 18 using Stoke’s
Theorem. We have

lim
δ→0

f(x+ δ)− f(x− δ)
2δ

= f ′(x)

f(x+ δ)− f(x− δ)
2δ

= f̂ δ(x) if δ 9 0

f̂ δ(x) = E
u∼Ball

[f(x+ δu)]

and the shrunken set is defined as Kδ = {x| x1−δ ∈ K} to avoid moving outside of K when we add the
sampling from the sphere. FKM achieves a regret bound according to the following theorem.

Theorem 1.1. E Regret(FKM) = O(T
3
4 )

To prove this, we begin with the following two lemmas.

Lemma 1.2. ∀x ∈ Kδ, Bδ(x) = {y|y = x+ δu} ⊆ K

Lemma 1.3. ∀x∗ ∈ K, ∃x∗δ ∈ Kδ s.t. |x∗ − x∗δ | = O(δ)

Proof. First, note that

E
T∑
t=1

[ft(yt)− ft(x∗)] ≤ E[
T∑
t=1

ft(yt)]− ft(x∗δ) + δTGD
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Thus we have

E[Regret] ≤ E
T∑
t=1

ft(yt)− ft(x∗δ) + δTGD

≤ E
T∑
t=1

[f̂ δt (xt)− f̂ δt (x∗δ)] + 3δTGD

≤ RegretOGD(∇̃1, . . . , ∇̃T ) + 3δTGD

≤ D2

η
+ η

T∑
t=1

|∇̃t|2 + 3δTGD by OGD regret bound

≤ D2

η
+ ηT

n2

δ2
+ 3δTGD by definition of ∇̃t

= O(T
3
4 ) taking η = T−

3
4 , δ = T−

1
4

2 BLO (Bandit Linear Optimization)

In these some cases of Bandit Convex Optimization, the loss functions are linear. Many interesting examples
can be reduced to or already have such loss functions (e.g. online routing). In this case, there exists an
efficient algorithm that achieves a tight regret bound of O(

√
T ). In ordinary BCO, we lost tightness at three

different places:

• nonlinearity of loss functions: normally, f̂δ 6= f

• the shrunken version of K, Kδ, is needed for the exploration space

• |∇̃t| ∼ 1
δ2

, too large

The first issue is solved by the nature of the loss functions: for linear functions, we have f̂δ = f . To solve
the second and third issues, we make use of self-concordant barrier functions.

Definition 2.1. (self-concordant barrier function): ∀K ⊆ Rn,∃ function RK which is a self-concordant bar-
rier function with “nice” differential properties (including smoothness and convexity). First,∇2RK(x)∀x ∈
K defines an ellipsoid ⊆ K, the Dikin ellipsoid. Then, we have εx = {y|(y − x)T∇2RK(x)(y − x) ≤ 1}.
If RK is a self-concordant barrier function, we have εx ⊆ K.

Example 2.2. ∀ polytope {Ax ≤ b}, R(x) = − 1
m

∑m
i=1 log(Aix− bi) is a self-concordant barrier function.

Example 2.3. For the ball, R(x) = − log(1− ‖x‖2) is a self-concordant barrier function.

Next, we introduce an algorithm that makes use of self-concordant barrier functions to address the loss
of tightness detailed earlier.
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Algorithm 2 Scrible Algorithm [Abernethy, Hazan, and Rakhlin]
1: procedure
2: Set x1 ∈ K arbitrary
3: for t = 1, 2, ... to T do
4: At = [∇2R(xt)]

− 1
2 ]

5: yt = xt +Atu, u ∼ Sn the sphere uniformly
6: ∇̃t = nft(yt)A

−1
t u

7: xt+1 = argminx∈K{
∑t

i=1∇i · x+ 1
ηR(x)}

8: end for
9: end procedure

Note that because of how we defined At, we have uTATt ∇2Atu ≤ 1, which solves our third issue. The
use of the Dikin ellipsoid from the self-concordant barrier function removes the need to shrink our K, while
still maintaining the exploration space. The Scrible algorithm therefore provides a tight regret bound:

Theorem 2.4. E[Regret(Scrible)] ≤ O(
√
T log T )

Proof.

E[
T∑
t=1

ft(yt)− ft(x∗)] = E[
T∑
t=1

∇t(yt − x∗)] by linearity of loss function

= E[
T∑
t=1

∇̃t(xt − x∗)] by E[yt] = xt,E[∇̃t] = ∇t

≤ Regret(RFTL) on {∇̃t} recognizing RFTL

≤ 1

η
·DR + η

T∑
t=1

(‖∇̃t‖t)2 by RFTL Theorem

=
1

η
·DR + η

[
(nft(yt))

2uTA−1t ∇2R(xt)A
−1
t u

]
≤ 1

η
·DR + ηnT

Now, using the fact that

T∑
t=1

E[ft(xt)]−
T∑
t=1

ft(x
∗) ≤

T∑
t=1

E[ft(xt)]−
T∑
t=1

ft(x
∗
δ) + δTGD

we have
T∑
t=1

E[ft(xt)]−
T∑
t=1

ft(x
∗)

≤ 1

η
·DR + ηnT + δTGD

=
R(x∗δ)−R(y1)

η
+ ηnT + δTGD

≤
ν log 1

δ

η
+ ηnT + δTGD

After choosing η = O( 1√
T
) and δ = O( 1

T ), we arrive at the desired regret bound.
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Example 2.5. Online Shortest Path

ft(path) =
∑
e∈path

wt
e

xt ∈ K = R|E| flow polytope

ft(xt) = wt · xt∑
e∈ν

xe = 0,−1 ≤ xe ≤ 1 flow conservation and capacity constraint
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