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1 Learning with Partial Feedback

Recall the “learning from expert advice” game: there areN experts indexed i ∈ [N ], and in the t-th round, the
player picks one expert it and “suffers the loss” associated with that expert ft(it) ∈ {0, 1}. The player’s goal
is to choose the experts i1, . . . , iT so as to minimize the regret: the difference between the total loss suffered
by the experts whom the player selected, and the total loss suffered by expert i∗ who was, in hindsight, the
best:

Regret =
T∑
t=1

ft(it)− min
i∗∈[N ]

T∑
t=1

ft(i
∗)

Crucially, in each round t of the “learning from expert advice” game, the player is given not only the loss of
the expert whom she chose, which is a single number ft(it) ∈ {0, 1}, but also the loss of all the other experts,
which is a function ft : [N ]→ {0, 1}. The multiplicative weights (MW) algorithm exploited this additional
information, by maintaining a “weight” for each expert and penalizing all experts who were wrong in round
t, not just the expert it who was chosen. However, in many real-world problems that we may wish to model
using online convex optimization, the “player” does not have access to the “loss” associated with decisions
other than the one that the player made. For example, if a (hypothetical) Princeton undergraduate is trying
to optimize his course schedule over his T = 8 semesters in college so as to minimize the number of essays
that he has to write, he does not know how many essays were assigned in classes that he did not take. This
motivates the so-called multi-armed bandit problem, a variant of “learning from expert advice” in which
the player only observes the regret of the expert whom she chose.

1.1 The Multi-Armed Bandit Problem

We have N experts. In each round of play t = 1, 2, . . . T , the player picks one expert it ∈ [N ] and suffers
a loss ft(it) ∈ [0, 1]. (Note that the loss here is real-valued, not binary as it was above.) The goal is to
minimize regret, defined as above.

Recall that in “learning from expert advice,” the multiplicative weights algorithm guaranteed a regret
bounded by

√
T logN . Is there an algorithm that can attain the same regret bound in the multi-armed bandit

case? Unfortunately,

Theorem 1.1. Any algorithm for the multi-armed bandit problem might attain Ω(N) regret in the worst
case.

Proof. Consider an situation where N − 1 of the experts always give a loss of 1, and one expert, chosen
uniformly at random, always gives a loss of 0.
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An optimal learner will keep trying experts until it finds the good one, thus:

E[Regret] = E

[
T∑
t=1

ft(it)− min
i∗∈[N ]

T∑
t=1

ft(i
∗)

]

= E

[
T∑
i=1

ft(it)

]
= E [number of iterations to find good expert]

=
N∑
j=1

P[takes ≥ j iterations to find good expert ]

=
N − 1

N
+
N − 1

N

N − 2

N − 1
+
N − 3

N − 2

N − 2

N − 1

N − 1

N
+ . . .

=
N − 1

N
+
N − 2

N
+
N − 3

N
+ . . .+

1

N

= Ω

(
N2

N

)
= Ω(N)

1.2 A Simple Algorithm

Intuitively, any algorithm for the multi-armed bandit problem will have to navigate the tradeoff between “ex-
ploration” (learning which experts are best) and “exploitation” (playing those experts). One simple approach
is to flip a coin on each round and, with probability δ, do an “explore” step, and with probability 1 − δ, do
an “exploit” step. Much like in the MW algorithm, we’ll maintain a weight for each expert which will keep
track of how “correct” that expert has been thus far. In the exploration phase, we’ll play a random expert and
adjust the weights, and in the exploitation phase, we’ll play an expert according to the weights.

Since we can’t update the weights according to the actual loss incurred by the all of the experts, we’ll
instead update the weights according to an unbiased estimator of the losses. Specifically, let ˆ̀

t ∈ RN be a
random variable whose expectation is

E[ˆ̀t(i)] = ft(i)

Algorithm 1 Simple Bandits Algorithm
Let x1 = 1

N 1
for t=1 to T do

if Bernoulli(δ) is 1 then
pick expert it ∈ [N ] uniformly at random

set ˆ̀
t(i) =

{
N
δ ft(i) if i = it

0 otherwise
else

pick expert it ∼ xt
set ˆ̀

t(i) = 0

update yt+1(i) = xt(i) e
−ε ˆ̀t(i) xt+1 = yt+1

||yt+1||1
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We claim that under this scheme, E[ˆ̀t(i)] = ft(i). Why?

E[ˆ̀t(i)] = E[ˆ̀t(i)|t is explore] Pr[t is explore] + E[ˆ̀t(i)|t is exploit] Pr[t is exploit]

= E[ˆ̀t(i)|t is explore](δ) + (0)(1− δ))
= δ E[ˆ̀t(i)|t is explore]

= δ
N∑
i=1

E
[
ˆ̀
t(i)|t is explore, it = i

]
Pr [it = i]

= δ

(
N

δ
ft(i)

)(
1

N

)
= ft(i)

Theorem 1.2. The expected regret of this simple algorithm is bounded by O(T
3
4

√
N(logN)

1
4 ).

Proof.

E[Regret] = E

[
T∑
t=1

ft(it)− min
i∈[N ]

T∑
t=1

ft(i)

]

= E

[
T∑
t=1

ˆ̀
t(it)− min

i∈[N ]

T∑
t=1

ˆ̀
t(i)

]

= E

 ∑
t is explore

ˆ̀
t(it) +

∑
t is exploit

ˆ̀(it)− min
i∈[N ]

T∑
t=1

ˆ̀
t(i)


since all of the “explore” steps may go horribly awry and incur the maximum loss of 1,

≤ E

num explore steps +
∑

t is exploit

ˆ̀(it)− min
i∈[N ]

T∑
t=1

ˆ̀
t(i)


= δT + E

 ∑
t is exploit

ˆ̀(it)− min
i∈[N ]

T∑
t=1

ˆ̀
t(i)


≤ δT + E

 ∑
t is exploit

ˆ̀(it)− min
i∈[N ]

∑
t is exploit

ˆ̀
t(i)


≤ δT + E [regret of hedge algorithm after T steps]

≤ δT +M
√

8T logN (OCO book page 82)

where M is any upper bound on ˆ̀
t(i). Since ˆ̀

t(i) ≤ N
δ ft(i) ≤

N
δ , we have

≤ δT +
1

δ

√
8TN2 logN

choosing δ = T−
1
4 (N2 logN)

1
4

≤ (1 +
√

8)T
3
4 (N2 logN)

1
4

= O(T
3
4

√
N(logN)

1
4 )
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1.3 Exp3

The simple algorithm presented above for the multi-armed bandit problem can be improved upon if we do
away with the distinction between “explore” and “exploit” steps.

Algorithm 2 EXP3 Algorithm
Let x1 = 1

N 1
for t=1 to T do

choose it ∼ xt and play it

set ˆ̀
t(i) =

{
1

xt(it)
ft(i) if i = it

0 otherwise

update yt+1(i) = xt(i) e
−εˆ̀t(i) xt+1 = yt+1

||yt+1||1

Theorem 1.3. The regret of EXP3 is bounded by O(
√
N logN

√
T ).

Is this the best regret bound one can attain for the bandit problem? No. In fact, the minimax rate for
expected regret is O(

√
NT ). In words, this means the following:

Theorem 1.4. For the bandit problem:

• There exists an adversary that forces any algorithm to incur expected regret at least Ω(
√
NT ).

• There exists an algorithm that incurs at most O(
√
NT ) expected regret against any adversary.

1.4 Online Routing

One could model the online routing problem as a multi-armed bandit problem. Each of the N “arms” of the
bandit is a path throughout the network; the loss function measures the time it takes a packet to travel along
that path. This approach would work, but the number of paths throughout the network scales exponentially
with the number of nodes. Can we do better?

Recall that the dimension of the flow polytope scales polynomially with the number of nodes in the
network. If we could optimize over the flow polytope directly, we might obtain a better regret bound.

This motivates a more general setting, called bandit convex optimization, which is OCO minus the
gradient.

2 Bandit Convex Optimization

In bandit convex optimization (BCO), as in online convex optimization, the player’s goal is to play some
xt ∈ K in the t-th round so as to minimize regret:

Regret =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

In BCO, however, the player is given far more limited feedback than in OCO: only a single number, ft(xt) ∈
R, instead of the whole loss function ft : K → R. Can we still do online learning without a gradient?
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2.1 FKM Algorithm

The idea behind the FKM (Flaxman, Kalai, and McMahan) algorithm is to follow an unbiased estimator of
the gradient.

For a function in one dimension f : R→ R, an unbiased estimator of the derivative is given by:

f̃ ′(x) =

{
1
δf(x+ δ) w.p. 1

2

−1
δf(x− δ) w.p. 1

2

As δ → 0, the estimator f̃ ′(x) tends toward f ′(x) in expectation:

lim
δ→0

E
[
f̃ ′(x)

]
= lim

δ→0

f(x+ δ)− f(x− δ)
2δ

= f ′(x)

This approach also works in higher dimensions. For a function f : Rd → R, an unbiased estimator of the
gradient is given by

∇̃fδ(x) =
d

δ
f(x + δv)v where v drawn uniformly over d-dimensional unit sphere S1

Stokes’ theorem guarantees that ∇̃fδ(x) is an unbiased estimator of the gradient:

lim
δ→0

E
[
∇̃fδ(x)

]
= ∇f(x)

How can we cheaply sample a vector v uniformly over the unit sphere? (That is, ||v|| = 1 and all directions
should be equally likely.) One way is to sample each element of v independently from the standard normal
distribution, and then scale v to have unit norm.

Assume for simplicity that 0 ∈ K.
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Algorithm 3 FKM Algorithm
set y1 = 0
for t = 1 to T do

sample ut ∼ S1
set xt = yt + δut and play xt
set gt = d

δ ft(xt)ut
update yt+1 = ΠKδ(yt − η gt)

where Kδ is defined as:

Kδ =

{
x ∈ Rd :

x

1− δ
∈ K

}
We project onto this “shrunken” decision set Kδ instead of the original decision set K in order to ensure that
xt + δv lies within the domain of ft : K → R.

Theorem 2.1. The FKM algorithm attains a regret of O(d T
3
4 ).

One can use the FKM algorithm for, say, the online routing problem, and the regret will scale polynomi-
ally, rather than exponentially, with the number of nodes in the network.
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