
THEORETICAL MACHINE LEARNING COS 511

LECTURE #16 MARCH 31, 2016

LECTURER: ELAD HAZAN SCRIBES: NASSIM FEDEL AND ESTHER ROLF

Today’s lecture is motivated by a fundamental question of statistical learning: which hypothesis classes
are learnable, and with what sample complexity? So far, we’ve seen that all finite hypothesis classes are
learnable, and some, but not all, infinite ones are. Thus, the cardinality of the hypothesis class does not
give a tight characterization of when a problem is learnable. In this lecture, we will define the concept of
VC-dimension, a quantity which can be determined for both finite and infinite hypothesis classes, and which
precisely determines when a problem is learnable. For the purpose of this lecture, we consider boolean
learning classification tasks, where the label set Y = {0, 1}.

1 VC Theory

DefineHC to be the restriction ofH onto C, i.e.:

HC := {h : C → Y = {0, 1} : h is the restriction of some ~ ∈ H}

Definition 1.1 (Shattering). Let C ⊆ X . We say that C is shattered byH when

|HC | = 2|C|

Note that we always have |HC | ≤ 2|C|. So C is shattered when the hypothesis class can fully represent
all functions on C.

Example 1.2. Let H be the set of intervals on the real line (i.e. inside the interval is classified as 1). Let
X = R be the real line, and let Y = {0, 1}. Then the set {−1, 0} is clearly shattered by H; for example, H
contains the intervals (−3

2 ,−
1
2), (−

1
2 ,

1
2), (−

3
2 ,

1
2) and (12 ,

3
2). However, a set of three points, for example,

{−1, 0, 1} is not shattered byH, since any interval containing −1 and 1 must contain 0, so the map sending
−1 to 1, 0 to 0, and 1 to 1 is not represented byH.

Definition 1.3 (VC-dimension). The VC-dimension ofH is the maximal cardinalitym such that there exists
a subset C ⊆ X such that |C| = m and C is shattered.

So for example, the hypothesis class in example 1.2 has VC-dimension 2.

Example 1.4. Let X = R2 and H be the set of axis-aligned rectangles (classify inside the rectangle as 1).
The VC-dimension is 4: for example, take C to be {(−1, 0), (1, 0), (0,−1), (0, 1)}.

The definition of VC-dimension applies to all types of hypothesis classes.

Example 1.5 (binary decision trees). Let H be the set of decision trees of size 3 (depth 3) on n variables.
A single hypothesis h ∈ H can fully represent functions on 3 of the n variables, but no more, so VC-
dimension(H)=3.

Example 1.6 (infinite VC-dimension). Let H be the set of all convex polygons in Euclidean space. This
has infinite VC dimension, since the cardinality of shattered subsets is unbounded: for example take equally
spaced points on the unit sphere. You can place arbitarily many points on the surface of the sphere, and still
find a convex polygon which includes any subset of those points, and excludes the rest.
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2 Tight characterization of (boolean) statistical learnability

Theorem 2.1 (Fundamental theorem of statistical/PAC learning). A learning problem (X,Y,H, l) is PAC-
learnable if and only if VC-dim(H) < ∞. Furthermore, if this holds, a sufficient sample complexity is
VC-dim(H)

ε2
log 1

δ . That is, if we have finite VC-Dimension, then for any ε, δ > 0, err(hERM) ≤ ε with proba-

bility ≥ 1− δ for a sample of size VC-dim(H)
ε2

log 1
δ .

Note that for finite VC-dim(H) ≤ log |H|.
Also, theorem 2.1 implies that if VC-dim(H) = ∞, then H is not learnable. This follows the same

intuition as the no free lunch theorem, that without restrictingH, we cannot learn.
Proof of fundamental theorem of statistical learning:

Proof. Define the growth function:

τH(m) := max
C⊆X,|C|=m

{|HC |}

Let d := VC-dim(H). For m ≤ d, we have τH(m) = 2m. For m > d, we prove Sauer’s lemma: that
τH(m) = O(md).

Lemma 2.2 (Sauer’s lemma). For m ≥ d, we have

τH(m) ≤
{
m

d

}
=

d∑
i=1

(
m

i

)
= O(md)

Proof. We use induction on m + d to prove the left inequality. Consider the base case m + d = 0. If
|H| > 1, there exists x ∈ X and h1, h2 ∈ H such that h1(x) 6= h2(x), which means that {x} is shattered,
which would mean d ≥ 1. Thus, we have τH(m) ≤ 1.

Now assume that the statement holds for any m+ d = k. We show that it holds for any m+ d = k + 1.
Fix such m, d ≥ 0 such that m+ d = k+1, and define m0 = m− 1. Take any C = {x1, . . . , xm0+1} ⊆ X
of sizem = m0+1 such that |HC | = τH(m0+1). Further, for any h ∈ HC , define h|m0 to be the restriction
of h to C \ {xm0+1}. We now define the following two sets of restrictions of hypotheses:

H1 := {h|m0 : h ∈ HC}
H2 := {h ∈ HC : h(xm0+1) = 1 and ∃~ ∈ HC with h|m0 = ~|m0 and ~(xm0+1) = 0}

Conceptually, the idea is to break up the complexity ofHC into two parts: complexity coming from the first
m0 elements, and the complexity by virtue of including xm0+1 in the set.

We first claim that
|HC | = |H1|+ |H2|

To see this, for each h ∈ HC , we are in one of two cases: no other ~ ∈ HC is equal to h on the first m0

elements, or exactly one other ~ ∈ HC is equal to h on the first m0 elements (i.e. h|m0 = ~|m0). In the
first case, h is counted exactly once by H1 and H2 (it’s not in H2, and its restriction to C \ {xm0+1} is
counted once by H1). In the second case, we have h 6= ~, and this pair of distinct hypotheses from HC is
counted exactly twice byH1 andH2: their common restriction to C \ {xm0+1} is counted once byH1, and
whichever one of h and ~ classifies xm0+1 as 1 is counted once byH2.

Further, by definition, we have

|H1| = |HC\{xm0+1}| ≤ τH(m0) ≤
{
m0

d

}
by induction hypothesis
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We also have
VC-dim(H2) ≤ VC-dim(HC)− 1 ≤ VC-dim(H)− 1

The right inequality follows since HC ⊆ H. To see the left inequality, let C2 be a subset of C of maximal
cardinality that is shattered by H2. Since everything in H2 classifies xm0+1 as 1, clearly xm0+1 /∈ C2 and
|C2 ∪ {xm0+1}| = |C2| + 1. But C2 ∪ {xm0+1} is clearly shattered by HC , since everything in H2 has a
related hypothesis inHC that agrees with it on the first m0 elements but maps xm0+1 to 0.

Thus,

|H2| =
∣∣∣(H2)C\{xm0+1}

∣∣∣ ≤ |τH2(m0)| ≤
{
m0

d− 1

}
by induction hypothesis

where the leftmost equality follows since everything inH2 classifies xm0+1 in the same way, so they’re fully
determined by their classification on C \ {xm0+1}.

Putting it all together, we get

|HC | ≤
{
m0

d

}
+

{
m0

d− 1

}
≤
{
m0 + 1

d

}
← see homework

as desired.

The second part of the proof of the theorem is to show that

err(hERM) ∼ log τH(2m)

m

To show this, we take two samples S, S′ ∼ D over X , where the two samples have size m.
Let A be the event that there exists h ∈ H such that errD(h) > ε and errS(h) = 0, and let B be the event

that there exists h ∈ H such that errS′(h) ≥ ε
2 and errS(h) = 0. Then note that

P[A] = P[A | B]P[B] + P[A | Bc]P[Bc]

≥ P[A | B]P[B]

≥ 1

2
P[B] ← we will show this next time

The proof will be completed in the next lecture.

3


