Theoretical Machine Learning - COS 511

Homework Assignment 5

Due Date: two weeks from announcement, in class

- (1) Consulting other students from this course is allowed. In this case clearly state whom you consulted with for each problem separately.
- (2) Searching the internet or literature for solutions, other than the course lecture notes, is NOT allowed.

Ex. 1:

Prove that for $m \ge d$,

$$\sum_{i=0}^{d} \binom{m}{i} \le \left(\frac{em}{d}\right)^{d}$$

Ex. 2:

In this exercise we consider the attribute set $X = \mathbb{R}^d$ for some $d \ge 1$, and the label set $\mathcal{Y} = \{-1, 1\}$. In this classification problem, we consider the set of all hyperplanes as candidate hypotheses.

More accurately, we define a hyperplane $H \in \mathbb{R}^d$ as $H = \{x | a^{\top}x = b\}$ for some $a \in \mathbb{R}^d$ and $b \in \mathbb{R}$ (For example, in \mathbb{R}^2 a hyperplane is simply a line), and its corresponding hypothesis $h : \mathbb{R}^d \to \{-1, 1\}$ as a function $h(x) = sign\{a^{\top}x - b\}$. We assume that $sign\{0\} = 1$. We denote by \mathcal{H} the set of all hypotheses of this kind. Show that:

- (1) For d = 2, the VC dimension of \mathcal{H} is 3.
- (2) For d = 3, the VC dimension of \mathcal{H} is 4.
- (3) For any value of d, it exists that $VC(\mathcal{H}) \ge d + 1$. I.e., show that there exists a set of d + 1 points that can be perfectly classified for any labelling.
- (4) For any value of d, it exists that $VC(\mathcal{H}) \leq d + 1$. I.e., show that there does not exist a set of d + 2 points that can be perfectly classified for any labeling.

Ex. 3:

For $m \ge d$, let $\binom{m}{d} = \sum_{i=0}^{d} \binom{m}{i}$. Prove that

$$\begin{pmatrix} m \\ d \end{pmatrix} = \begin{pmatrix} m-1 \\ d \end{pmatrix} + \begin{pmatrix} m-1 \\ d-1 \end{pmatrix}$$

Ex. 4-7:

The following questions are taken from the book draft on online convex optimization (reading material number 1).

- (1) problem 3 in chapter 6.
- (2) problem 4 in chapter 6.
- (3) problem 5 in chapter 6.
- (4) problem 6 in chapter 6.