Theoretical Machine Learning - COS 511

Homework Assignment 1

Due Date: 22 Feb 2016, till 22:00

- (1) Consulting other students from this course is allowed. In this case clearly state whom you consulted with for each problem separately.
- (2) Searching the internet or literature for solutions, other than the course lecture notes, is NOT allowed.

Ex. 1:

Let $X = \mathbb{R}^2$ be the domain and $Y = \{0, 1\}$ be the label set of a learning problem. Let $\mathcal{H} = \{h_r, r \in \mathbb{R}_+\}$ be a set of hypothesis corresponding to all concentric circles on the plane that classify as

$$h_r(x) = \begin{cases} 1 & ||x||_2 \le r \\ \\ 0 & o/w \end{cases}$$

Prove that under the realizability assumption $\mathcal H$ is PAC-learnable with sample complexity

$$m_{\mathcal{H}}(\varepsilon, \delta) \le \left[\frac{\log \frac{1}{\delta}}{\varepsilon}\right]$$

Ex. 2: [agnostic means noise-tolerance]

Let \mathcal{A} be an agnostic learning algorithm for learning problem $L = (X, Y = \{0, 1\}, \mathcal{D}, \mathcal{H})$, and concept $f : X \mapsto Y$ which is realized by \mathcal{H} . Consider the concept \hat{f} which is obtained by replacing the label associated with each domain entry $x \in X$ randomly with probability ε_0 every time x is sampled independently. That is:

$$\hat{f}(x) = \begin{cases} 1 & w.p. \frac{\varepsilon_0}{2} \\ 0 & w.p. \frac{\varepsilon_0}{2} \\ f(x) & o/w \end{cases}$$

Prove that \mathcal{A} can ε -approximate the concept \hat{f} : that is, show that \mathcal{A} can produce a hypothesis $h_{\mathcal{A}}$ that has error

$$\operatorname{err}_{D}(h_{\mathcal{R}}) \leq \frac{1}{2}\varepsilon_{0} + \varepsilon$$

with probability at least $1 - \delta$ for every ε, δ with sample complexity polynomial in $\frac{1}{\varepsilon}, \log \frac{1}{\delta}, \log |H|$.

Ex. 3: [Proving Chernoff's bound]

In this exercise we'll prove Chernoff's inequality:

Let $x_1, x_2...x_k$ be independent random variables, each receiving the values $\{-1, 1\}$ w.p $\frac{1}{2}$. Define: $X = \sum_{i=1}^{k} x_i$, then for any real number t > 0:

$$\mathbb{P}[X \ge t] \le e^{\frac{-t^2}{2k}}$$

• For the random variable *X* above, show that for every $\lambda \ge 0$,

$$\Pr[X \ge t] = \Pr[e^{\lambda X} \ge e^{\lambda t}] \le e^{-\lambda t} \cdot \prod_{i=1}^{k} \mathbb{E}[e^{\lambda x_i}] = e^{-\lambda t} \cdot (\frac{e^{\lambda}}{2} + \frac{e^{-\lambda}}{2})^k$$

- Prove that for all $\lambda > 0$, $(\frac{e^{\lambda}}{2} + \frac{e^{-\lambda}}{2}) \le e^{\frac{\lambda^2}{2}}$ (hint: think of Taylor's theorem)
- Show how to conclude with the statement: $\mathbb{P}[X \ge t] \le e^{\frac{-t^2}{2k}}$

Ex. 4:

For this problem, you need not be concerned about algorithmic efficiency.

Suppose that the domain X is finite. Prove or disprove the following statement:
If a concept f is PAC learnable by H, then f ∈ H. (To prove the statement, you of course need to give a proof showing that it is always true. To disprove the

statement, you can simply provide a counterexample showing that it is not true in general.)

Repeat the first part without the assumption that X is finite. In other words, for the case that the domain X is arbitrary and not necessarily finite, prove or disprove that if *f* is PAC learnable by *H*, then *f* ∈ *H*.

Ex. 5:

Extend the no free lunch theorem to state the following:

There exists a domain X such that for all $\varepsilon > 0$, for any integer $m \in N$, learning algorithm A which given a sample S produces hypothesis A(S), there exists a distribution D and a concept $f : X \mapsto \{0, 1\}$ such that

- $\operatorname{err}_D(f) = 0$
- $\mathbf{E}_{S \sim D^m}[\operatorname{err}(A(S))] \geq \frac{1}{2} \varepsilon$