Machine Learning Basics
Lecture 1: linear models

Princeton University COS 495
Instructor: Yingyu Liang
What is machine learning?

• “A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T as measured by P, improves with experience E.”

Example 1: image classification

Task: determine if the image is indoor or outdoor
Performance measure: probability of misclassification
Example 1: image classification

Experience/Data: images with labels

Indoor

outdoor
Example 1: image classification

• A few terminologies
 • Training data: the images given for learning
 • Test data: the images to be classified
 • Binary classification: classify into two classes
Example 1: image classification (multi-class)

ImageNet figure borrowed from vision.stanford.edu
Example 2: clustering images

Task: partition the images into 2 groups
Performance: similarities within groups
Data: a set of images
Example 2: clustering images

• A few terminologies
 • Unlabeled data vs labeled data
 • Supervised learning vs unsupervised learning
Math formulation

Indoor

Feature vector: x_i

Label: y_i

Extract features

Color Histogram

Red Green Blue
Math formulation

Extract features

Feature vector: x_j

Color Histogram

Label: y_j

outdoor

1
Math formulation

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \)
• Find \(y = f(x) \) using training data
• s.t. \(f \) correct on test data

What kind of functions?
Math formulation

• Given training data \{(x_i, y_i): 1 \leq i \leq n\}
• Find \(y = f(x) \in \mathcal{H} \) using training data
• s.t. \(f \) correct on test data
Math formulation

• Given training data \{(x_i, y_i): 1 \leq i \leq n\}
• Find \(y = f(x) \in \mathcal{H} \) using training data
• s.t. \(f \) correct on test data

Connection between training data and test data?
Math formulation

- Given training data \(\{(x_i, y_i): 1 \leq i \leq n\}\) i.i.d. from distribution \(D\)
- Find \(y = f(x) \in \mathcal{H}\) using training data
- s.t. \(f\) correct on test data i.i.d. from distribution \(D\)

They have the same distribution

i.i.d.: independently identically distributed
Math formulation

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
• Find \(y = f(x) \in \mathcal{H} \) using training data
• s.t. \(f \) correct on test data i.i.d. from distribution \(D \)
Math formulation

• Given training data \(\{(x_i, y_i) : 1 \leq i \leq n \} \) i.i.d. from distribution \(D \)
• Find \(y = f(x) \in \mathcal{H} \) using training data
• s.t. the expected loss is small

\[
L(f) = \mathbb{E}_{(x, y) \sim D}[l(f, x, y)]
\]

Various loss functions
Math formulation

• Given training data \{ (x_i, y_i) : 1 \leq i \leq n \} i.i.d. from distribution \(D \)
• Find \(y = f(x) \in \mathcal{H} \) using training data
• s.t. the expected loss is small

\[
L(f) = \mathbb{E}_{(x, y) \sim D} [l(f, x, y)]
\]

• Examples of loss functions:
 • 0-1 loss: \(l(f, x, y) = \mathbb{I}[f(x) \neq y] \) and \(L(f) = \Pr[f(x) \neq y] \)
 • \(l_2 \) loss: \(l(f, x, y) = [f(x) - y]^2 \) and \(L(f) = \mathbb{E}[f(x) - y]^2 \)
Math formulation

• Given training data \{(x_i, y_i): 1 \leq i \leq n\} i.i.d. from distribution \(D\)
• Find \(y = f(x) \in \mathcal{H}\) using training data
• s.t. the expected loss is small
 \(L(f) = \mathbb{E}_{(x,y) \sim D}[l(f, x, y)]\)
Math formulation

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)

• Find \(y = f(x) \in \mathcal{H} \) that minimizes \(\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i) \)

• s.t. the expected loss is small

\[
L(f) = \mathbb{E}_{(x, y) \sim D}[l(f, x, y)]
\]

Empirical loss
Machine learning 1-2-3

• Collect data and extract features
• Build model: choose hypothesis class \mathcal{H} and loss function l
• Optimization: minimize the empirical loss
Wait...

• Why handcraft the feature vectors x, y?
 • Can use prior knowledge to design suitable features

• Can computer learn the features on the raw images?
 • Learn features directly on the raw images: Representation Learning
 • Deep Learning \subseteq Representation Learning \subseteq Machine Learning \subseteq Artificial Intelligence
Wait...

• Does MachineLearning-1-2-3 include all approaches?
 • Include many but not all
 • Our current focus will be MachineLearning-1-2-3
Example: Stock Market Prediction

Sliding window over time: serve as input x; non-i.i.d.
Real data: Prostate Cancer by Stamey et al. (1989)

Figure borrowed from *The Elements of Statistical Learning*

y: prostate specific antigen

(x_1, \ldots, x_8): clinical measures
Linear regression

- Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
- Find \(f_w(x) = w^T x \) that minimizes \(\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \)

- Hypothesis class \(\mathcal{H} \)

- \(l_2 \) loss; also called mean square error
Linear regression: optimization

• Given training data \{ (x_i, y_i): 1 \leq i \leq n \} i.i.d. from distribution \(D \)

• Find \(f_w(x) = w^T x \) that minimizes \(\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \)

• Let \(X \) be a matrix whose \(i \)-th row is \(x_i^T \), \(y \) be a vector \((y_1, \ldots, y_n)^T \)

\[
\hat{L}(f_w) = \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 = \frac{1}{n} \|Xw - y\|_2^2
\]
Linear regression: optimization

• Set the gradient to 0 to get the minimizer

\[\nabla_w \hat{L}(f_w) = \nabla_w \frac{1}{n} \|Xw - y\|_2^2 = 0 \]

\[\nabla_w [(Xw - y)^T (Xw - y)] = 0 \]

\[\nabla_w [w^T X^T Xw - 2w^T X^T y + y^T y] = 0 \]

\[2X^T Xw - 2X^T y = 0 \]

\[w = (X^T X)^{-1} X^T y \]
Linear regression: optimization

• Algebraic view of the minimizer
 • If X is invertible, just solve $Xw = y$ and get $w = X^{-1}y$
 • But typically X is a tall matrix

Normal equation: $w = (X^T X)^{-1}X^T y$
Linear regression with bias

• Given training data \(\{(x_i, y_i): 1 \leq i \leq n\} \) i.i.d. from distribution \(D \)
• Find \(f_{w,b}(x) = w^T x + b \) to minimize the loss

• Reduce to the case without bias:
 • Let \(w' = [w; b], x' = [x; 1] \)
 • Then \(f_{w,b}(x) = w^T x + b = (w')^T (x') \)