Deep Learning Basics
Lecture 9: Recurrent Neural Networks

Princeton University COS 495

Instructor: Yingyu Liang

Introduction

Recurrent neural networks

* Dates back to (Rumelhart et al., 1986)

* A family of neural networks for handling sequential data, which
involves variable length inputs or outputs

* Especially, for natural [anguage processing (NLP)

Sequential data

* Each data point: A sequence of vectors x(©), for1 <t <t
e Batch data: many sequences with different lengths =
* Label: can be a scalar, a vector, or even a sequence

* Example
e Sentiment analysis
* Machine translation

Example: machine translation

Economic growth has slowed down in recent years
/

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down in recent vyears

La croissance économique s' est ralentie ces derniéres années .

Figure from: devblogs.nvidia.com

More complicated sequential data

e Data point: two dimensional sequences like images
 Label: different type of sequences like text sentences

 Example: image captioning

Image captioning
man wearing a black shirt
red shirt on a man jelephant is standing

large green elephant is brown
trees ’ S e P |
roof of a
” building

trunk of an '
elephant green trees
in the

& background
rockson _V4

the ground [
leg of an

ball is elephant

white |

ground IS Rl R e e IR leg of an
visible i — e ey Slephant

N

shadow on

ground is brown elephant is standing the ground

Figure from the paper “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”,
by Justin Johnson, Andrej Karpathy, Li Fei-Fei

Computational graphs

A typical dynamic system

1 s‘f T‘--P.—V.—V.-M (- ‘H

S(t+1) — f(S(t), 8)

Figure from Deep Learning,
Goodfellow, Bengio and Courville

A system driven by external data

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Compact view

f Unfold

S(t+1) — f(s(t),x(t“); 9)

Figure from Deep Learning,
Goodfellow, Bengio and Courville

square: one step time delay

Compactvie

‘TN
| 3{) L @ e h’ 3(...}:
~_
quald

S(t+1) — (S(t),x(t+1); 9)

Key: the same and Figure from Deep Learning,
for a|| time Steps Goodfellow, Bengio and Courville

Recurrent neural networks (RNN)

Recurrent neural networks

* Use the same computational function and parameters across different
time steps of the sequence

* Each time step: takes the input entry and the previous hidden state to
compute the output entry

* Loss: typically computed every time step

Figure from Deep Learning, by Goodfellow, Bengio and Courville

Math formula:
a = b+ WwWsll Lyt

s = tanh(a®)
o) = ¢4+ Vsl
3;\'(t) _ suftma.x(()(t))

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Advantage

* Hidden state: a lossy summary of the past

e Shared functions and parameters: greatly reduce the capacity and
good for generalization in learning

* Explicitly use the prior knowledge that the sequential data can be
processed by in the same way at different time step (e.g., NLP)

Advantage

* Hidden state: a lossy summary of the past

e Shared functions and parameters: greatly reduce the capacity and
good for generalization in learning

* Explicitly use the prior knowledge that the sequential data can be
processed by in the same way at different time step (e.g., NLP)

* Yet still powerful (actually universal): any function computable by a
Turing machine can be computed by such a recurrent network of a
finite size (see, e.g., Siegelmann and Sontag (1995))

Training RNN

* Principle: unfold the computational graph, and use backpropagation
* Called back-propagation through time (BPTT) algorithm
e Can then apply any general-purpose gradient-based techniques

Training RNN

* Principle: unfold the computational graph, and use backpropagation
* Called back-propagation through time (BPTT) algorithm
e Can then apply any general-purpose gradient-based techniques

* Conceptually: first compute the gradients of the internal nodes, then
compute the gradients of the parameters

Math formula:
a = b+ WwWsll Lyt

s = tanh(a®)
o) = ¢4+ Vsl
3;\'(t) _ suftma.x(()(t))

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Gradient at L(®): (total loss
is sum of those at different
time steps)
JL |
()L—(t) = 1.

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Gradient at 0(®):

OL oL oL®
O~ gL® 4 @ ¢ 5y

; Jo;

o

- =

W / N\
i)0

\ /

S -

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Gradient at s(¥:

00"

0s(7)

(Vo L)

= (Vo) V

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Gradient at s(©:

Os (t+1) Ho(t)

|14
’
.

\

-

-

N\
gl 1
/

~_ -

Figure from Deep Learning,

Goodfellow, Bengio and Courville

Gradient at parameter V/:

dolt)
Y (Vo L) v Z LoL)ys)

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Variants of RNN

RNN

* Use the same computational function and parameters across different
time steps of the sequence

* Each time step: takes the input entry and the previous hidden state to
compute the output entry

* Loss: typically computed every time step

* Many variants
* Information about the past can be in many other forms
* Only output at the end of the sequence

oforotone

-

\

Example: use the output at the
previous step

/
\ l

—
Unfold

V V \

4 -
/

U U U

@ 0 @ Figure from Deep Learning,

Goodfellow, Bengio and Courville

Example: only output at the end

Figure from Deep Learning,
Goodfellow, Bengio and Courville

Bidirectional RNNs

* Many applications: output at time ¢ may depend on the whole input
sequence

* Example in speech recognition: correct interpretation of the current
sound may depend on the next few phonemes, potentially even the
next few words

e Bidirectional RNNs are introduced to address this

BIRNNS

Figure from Deep Learning,
Goodfellow, Bengio and Courville

99‘699*9
"
OONOLOLONEO

Encoder-decoder RNNs

* RNNs: can map sequence to one vector; or to sequence of same
length

* What about mapping sequence to sequence of different length?

* Example: speech recognition, machine translation, question
answering, etc

/

.

h\ ,J
/

'\‘

Encoder

P
/ “
|

i
1 2

(Decoder Y)

.
.«’ \
L

S

"; .-
i

L

Figure from Deep Learning,
Goodfellow, Bengio and Courville

