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Introduction



Recurrent neural networks

* Dates back to (Rumelhart et al., 1986)

* A family of neural networks for handling sequential data, which
involves variable length inputs or outputs

* Especially, for natural [anguage processing (NLP)



Sequential data

* Each data point: A sequence of vectors x(©), for1 <t <t
e Batch data: many sequences with different lengths =
* Label: can be a scalar, a vector, or even a sequence

* Example
e Sentiment analysis
* Machine translation



Example: machine translation

Economic growth has slowed down in recent years
/

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down in recent vyears

La croissance économique s' est ralentie ces derniéres années .

Figure from: devblogs.nvidia.com



More complicated sequential data

e Data point: two dimensional sequences like images
 Label: different type of sequences like text sentences

 Example: image captioning



Image captioning
man wearing a black shirt
red shirt on a man jelephant is standing

large green elephant is brown
trees ’ S e P |
roof of a
” building
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shadow on
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Figure from the paper “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”,
by Justin Johnson, Andrej Karpathy, Li Fei-Fei



Computational graphs



A typical dynamic system
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S(t+1) — f(S(t), 8)

Figure from Deep Learning,
Goodfellow, Bengio and Courville



A system driven by external data

Figure from Deep Learning,
Goodfellow, Bengio and Courville



Compact view

f Unfold

S(t+1) — f(s(t),x(t“); 9)

Figure from Deep Learning,
Goodfellow, Bengio and Courville



square: one step time delay
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Key: the same and Figure from Deep Learning,
for a|| time Steps Goodfellow, Bengio and Courville




Recurrent neural networks (RNN)



Recurrent neural networks

* Use the same computational function and parameters across different
time steps of the sequence

* Each time step: takes the input entry and the previous hidden state to
compute the output entry

* Loss: typically computed every time step



Figure from Deep Learning, by Goodfellow, Bengio and Courville



Math formula:
a = b+ WwWsll Lyt

s = tanh(a®)
o) = ¢4+ Vsl
3;\'(t) _ suftma.x(()(t) )

Figure from Deep Learning,
Goodfellow, Bengio and Courville



Advantage

* Hidden state: a lossy summary of the past

e Shared functions and parameters: greatly reduce the capacity and
good for generalization in learning

* Explicitly use the prior knowledge that the sequential data can be
processed by in the same way at different time step (e.g., NLP)



Advantage

* Hidden state: a lossy summary of the past

e Shared functions and parameters: greatly reduce the capacity and
good for generalization in learning

* Explicitly use the prior knowledge that the sequential data can be
processed by in the same way at different time step (e.g., NLP)

* Yet still powerful (actually universal): any function computable by a
Turing machine can be computed by such a recurrent network of a
finite size (see, e.g., Siegelmann and Sontag (1995))



Training RNN

* Principle: unfold the computational graph, and use backpropagation
* Called back-propagation through time (BPTT) algorithm
e Can then apply any general-purpose gradient-based techniques



Training RNN

* Principle: unfold the computational graph, and use backpropagation
* Called back-propagation through time (BPTT) algorithm
e Can then apply any general-purpose gradient-based techniques

* Conceptually: first compute the gradients of the internal nodes, then
compute the gradients of the parameters



Math formula:
a = b+ WwWsll Lyt

s = tanh(a®)
o) = ¢4+ Vsl
3;\'(t) _ suftma.x(()(t) )

Figure from Deep Learning,
Goodfellow, Bengio and Courville



Gradient at L(®): (total loss
is sum of those at different
time steps)
JL |
()L—(t) = 1.

Figure from Deep Learning,
Goodfellow, Bengio and Courville



Gradient at 0(®):
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Figure from Deep Learning,
Goodfellow, Bengio and Courville



Gradient at s(¥:
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Figure from Deep Learning,
Goodfellow, Bengio and Courville



Gradient at s(©:
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Figure from Deep Learning,

Goodfellow, Bengio and Courville




Gradient at parameter V/:
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Figure from Deep Learning,
Goodfellow, Bengio and Courville



Variants of RNN



RNN

* Use the same computational function and parameters across different
time steps of the sequence

* Each time step: takes the input entry and the previous hidden state to
compute the output entry

* Loss: typically computed every time step

* Many variants
* Information about the past can be in many other forms
* Only output at the end of the sequence
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Example: only output at the end

Figure from Deep Learning,
Goodfellow, Bengio and Courville



Bidirectional RNNs

* Many applications: output at time ¢ may depend on the whole input
sequence

* Example in speech recognition: correct interpretation of the current
sound may depend on the next few phonemes, potentially even the
next few words

e Bidirectional RNNs are introduced to address this



BIRNNS

Figure from Deep Learning,
Goodfellow, Bengio and Courville
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Encoder-decoder RNNs

* RNNs: can map sequence to one vector; or to sequence of same
length

* What about mapping sequence to sequence of different length?

* Example: speech recognition, machine translation, question
answering, etc
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Figure from Deep Learning,
Goodfellow, Bengio and Courville



