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What is regularization?

• In general: any method to prevent overfitting or help the optimization

• Specifically: additional terms in the training optimization objective to 
prevent overfitting or help the optimization



Review: overfitting



𝑡 = sin 2𝜋𝑥 + 𝜖

Figure from Machine Learning 
and Pattern Recognition, Bishop

Overfitting example: regression using polynomials



Overfitting example: regression using polynomials

Figure from Machine Learning 
and Pattern Recognition, Bishop



Overfitting

• Empirical loss and expected loss are different

• Smaller the data set, larger the difference between the two

• Larger the hypothesis class, easier to find a hypothesis that fits the 
difference between the two
• Thus has small training error but large test error (overfitting)



Prevent overfitting

• Larger data set helps

• Throwing away useless hypotheses also helps

• Classical regularization: some principal ways to constrain hypotheses 

• Other types of regularization: data augmentation, early stopping, etc.



Different views of regularization



Regularization as hard constraint

• Training objective

min
𝑓

෠𝐿 𝑓 =
1

𝑛
෍

𝑖=1

𝑛

𝑙(𝑓, 𝑥𝑖 , 𝑦𝑖)

subject to: 𝑓 ∈ 𝓗

• When parametrized

min
𝜃

෠𝐿 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑙(𝜃, 𝑥𝑖 , 𝑦𝑖)

subject to: 𝜃 ∈ 𝛺



Regularization as hard constraint

• When 𝛺 measured by some quantity 𝑅

min
𝜃

෠𝐿 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑙(𝜃, 𝑥𝑖 , 𝑦𝑖)

subject to: 𝑅 𝜃 ≤ 𝑟

• Example: 𝑙2 regularization

min
𝜃

෠𝐿 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑙(𝜃, 𝑥𝑖 , 𝑦𝑖)

subject to: | 𝜃| 2
2 ≤ 𝑟2



Regularization as soft constraint

• The hard-constraint optimization is equivalent to soft-constraint

min
𝜃

෠𝐿𝑅 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑙(𝜃, 𝑥𝑖 , 𝑦𝑖) + 𝜆∗𝑅(𝜃)

for some regularization parameter 𝜆∗ > 0

• Example: 𝑙2 regularization

min
𝜃

෠𝐿𝑅 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑙(𝜃, 𝑥𝑖 , 𝑦𝑖) + 𝜆∗| 𝜃| 2
2



Regularization as soft constraint

• Showed by Lagrangian multiplier method

ℒ 𝜃, 𝜆 ≔ ෠𝐿 𝜃 + 𝜆[𝑅 𝜃 − 𝑟]

• Suppose 𝜃∗ is the optimal for hard-constraint optimization 

𝜃∗ = argmin
𝜃

max
𝜆≥0

ℒ 𝜃, 𝜆 ≔ ෠𝐿 𝜃 + 𝜆[𝑅 𝜃 − 𝑟]

• Suppose 𝜆∗ is the corresponding optimal for max

𝜃∗ = argmin
𝜃

ℒ 𝜃, 𝜆∗ ≔ ෠𝐿 𝜃 + 𝜆∗[𝑅 𝜃 − 𝑟]



Regularization as Bayesian prior

• Bayesian view: everything is a distribution

• Prior over the hypotheses: 𝑝 𝜃

• Posterior over the hypotheses: 𝑝 𝜃 | {𝑥𝑖 , 𝑦𝑖}

• Likelihood: 𝑝 𝑥𝑖 , 𝑦𝑖 𝜃)

• Bayesian rule:

𝑝 𝜃 | {𝑥𝑖 , 𝑦𝑖} =
𝑝 𝜃 𝑝 𝑥𝑖 , 𝑦𝑖 𝜃)

𝑝({𝑥𝑖 , 𝑦𝑖})



Regularization as Bayesian prior

• Bayesian rule:

𝑝 𝜃 | {𝑥𝑖 , 𝑦𝑖} =
𝑝 𝜃 𝑝 𝑥𝑖 , 𝑦𝑖 𝜃)

𝑝({𝑥𝑖 , 𝑦𝑖})

• Maximum A Posteriori (MAP):

max
𝜃

log 𝑝 𝜃 | {𝑥𝑖 , 𝑦𝑖} = max
𝜃

log 𝑝 𝜃 + log 𝑝 𝑥𝑖 , 𝑦𝑖 | 𝜃

Regularization MLE loss



Regularization as Bayesian prior

• Example: 𝑙2 loss with 𝑙2 regularization

min
𝜃

෠𝐿𝑅 𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝜃 𝑥𝑖 − 𝑦𝑖
2 + 𝜆∗| 𝜃| 2

2

• Correspond to a normal likelihood 𝑝 𝑥, 𝑦 | 𝜃 and a normal prior 𝑝(𝜃)



Three views

• Typical choice for optimization: soft-constraint

min
𝜃

෠𝐿𝑅 𝜃 = ෠𝐿 𝜃 + 𝜆𝑅(𝜃)

• Hard constraint and Bayesian view: conceptual; or used for derivation



Three views

• Hard-constraint preferred if
• Know the explicit bound 𝑅 𝜃 ≤ 𝑟

• Soft-constraint causes trapped in a local minima with small 𝜃

• Projection back to feasible set leads to stability

• Bayesian view preferred if
• Know the prior distribution



Some examples



Classical regularization

• Norm penalty
• 𝑙2 regularization

• 𝑙1 regularization

• Robustness to noise 



𝑙2 regularization

min
𝜃

෠𝐿𝑅 𝜃 = ෠𝐿(𝜃) +
𝛼

2
| 𝜃| 2

2

• Effect on (stochastic) gradient descent 

• Effect on the optimal solution



Effect on gradient descent

• Gradient of regularized objective

𝛻෠𝐿𝑅 𝜃 = 𝛻෠𝐿(𝜃) + 𝛼𝜃

• Gradient descent update 

𝜃 ← 𝜃 − 𝜂𝛻෠𝐿𝑅 𝜃 = 𝜃 − 𝜂 𝛻෠𝐿 𝜃 − 𝜂𝛼𝜃 = 1 − 𝜂𝛼 𝜃 − 𝜂 𝛻෠𝐿 𝜃

• Terminology: weight decay



Effect on the optimal solution

• Consider a quadratic approximation around 𝜃∗

෠𝐿 𝜃 ≈ ෠𝐿 𝜃∗ + 𝜃 − 𝜃∗ 𝑇𝛻෠𝐿 𝜃∗ +
1

2
𝜃 − 𝜃∗ 𝑇𝐻 𝜃 − 𝜃∗

• Since 𝜃∗ is optimal, 𝛻෠𝐿 𝜃∗ = 0

෠𝐿 𝜃 ≈ ෠𝐿 𝜃∗ +
1

2
𝜃 − 𝜃∗ 𝑇𝐻 𝜃 − 𝜃∗

𝛻෠𝐿 𝜃 ≈ 𝐻 𝜃 − 𝜃∗



Effect on the optimal solution

• Gradient of regularized objective 

𝛻෠𝐿𝑅 𝜃 ≈ 𝐻 𝜃 − 𝜃∗ + 𝛼𝜃

• On the optimal 𝜃𝑅
∗

0 = 𝛻෠𝐿𝑅 𝜃𝑅
∗ ≈ 𝐻 𝜃𝑅

∗ − 𝜃∗ + 𝛼𝜃𝑅
∗

𝜃𝑅
∗ ≈ 𝐻 + 𝛼𝐼 −1𝐻𝜃∗



Effect on the optimal solution

• The optimal

𝜃𝑅
∗ ≈ 𝐻 + 𝛼𝐼 −1𝐻𝜃∗

• Suppose 𝐻 has eigen-decomposition 𝐻 = 𝑄Λ𝑄𝑇

𝜃𝑅
∗ ≈ 𝐻 + 𝛼𝐼 −1𝐻𝜃∗ = 𝑄 Λ + 𝛼𝐼 −1Λ𝑄𝑇𝜃∗

• Effect: rescale along eigenvectors of 𝐻



Effect on the optimal solution

Figure from Deep Learning, 
Goodfellow, Bengio and Courville

Notations: 
𝜃∗ = 𝑤∗, 𝜃𝑅

∗ = ෥𝑤



𝑙1 regularization

min
𝜃

෠𝐿𝑅 𝜃 = ෠𝐿(𝜃) + 𝛼| 𝜃 |1

• Effect on (stochastic) gradient descent

• Effect on the optimal solution



Effect on gradient descent

• Gradient of regularized objective

𝛻෠𝐿𝑅 𝜃 = 𝛻෠𝐿 𝜃 + 𝛼 sign(𝜃)

where sign applies to each element in 𝜃

• Gradient descent update 

𝜃 ← 𝜃 − 𝜂𝛻෠𝐿𝑅 𝜃 = 𝜃 − 𝜂 𝛻෠𝐿 𝜃 − 𝜂𝛼 sign(𝜃)



Effect on the optimal solution

• Consider a quadratic approximation around 𝜃∗

෠𝐿 𝜃 ≈ ෠𝐿 𝜃∗ + 𝜃 − 𝜃∗ 𝑇𝛻෠𝐿 𝜃∗ +
1

2
𝜃 − 𝜃∗ 𝑇𝐻 𝜃 − 𝜃∗

• Since 𝜃∗ is optimal, 𝛻෠𝐿 𝜃∗ = 0

෠𝐿 𝜃 ≈ ෠𝐿 𝜃∗ +
1

2
𝜃 − 𝜃∗ 𝑇𝐻 𝜃 − 𝜃∗



Effect on the optimal solution

• Further assume that 𝐻 is diagonal and positive (𝐻𝑖𝑖> 0, ∀𝑖)
• not true in general but assume for getting some intuition

• The regularized objective is (ignoring constants)

෠𝐿𝑅 𝜃 ≈෍

𝑖

1

2
𝐻𝑖𝑖 𝜃𝑖 − 𝜃𝑖

∗ 2 + 𝛼 |𝜃𝑖|

• The optimal 𝜃𝑅
∗

(𝜃𝑅
∗)𝑖 ≈

max 𝜃𝑖
∗ −

𝛼

𝐻𝑖𝑖
, 0 if 𝜃𝑖

∗ ≥ 0

min 𝜃𝑖
∗ +

𝛼

𝐻𝑖𝑖
, 0 if 𝜃𝑖

∗ < 0



Effect on the optimal solution

• Effect: induce sparsity

−
𝛼

𝐻𝑖𝑖

𝛼

𝐻𝑖𝑖

(𝜃𝑅
∗)𝑖

(𝜃∗)𝑖



Effect on the optimal solution

• Further assume that 𝐻 is diagonal

• Compact expression for the optimal 𝜃𝑅
∗

(𝜃𝑅
∗)𝑖 ≈ sign 𝜃𝑖

∗ max{ 𝜃𝑖
∗ −

𝛼

𝐻𝑖𝑖
, 0}



Bayesian view

• 𝑙1 regularization corresponds to Laplacian prior

𝑝 𝜃 ∝ exp(𝛼෍

𝑖

|𝜃𝑖|)

log 𝑝 𝜃 = 𝛼෍

𝑖

|𝜃𝑖| + constant = 𝛼| 𝜃 |1 + constant


