Deep Learning Basics
Lecture 3: Regularization |

Princeton University COS 495

Instructor: Yingyu Liang



What is regularization?

* In general: any method to prevent overfitting or help the optimization

 Specifically: additional terms in the training optimization objective to
prevent overfitting or help the optimization



Review: overfitting



Overfitting example: regression using polynomials
t =sin(2mx) + €
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Overfitting example: regression using polynomials
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Overfitting

* Empirical loss and expected loss are different

* Smaller the data set, larger the difference between the two

 Larger the hypothesis class, easier to find a hypothesis that fits the
difference between the two
* Thus has small training error but large test error (overfitting)



Prevent overfitting

 Larger data set helps
* Throwing away useless hypotheses also helps

* Classical regularization: some principal ways to constrain hypotheses
e Other types of regularization: data augmentation, early stopping, etc.



Different views of regularization



Regularization as hard constraint

* Training objective .
A 1
min () = - ) 1% )
=1
subjectto: f €H

* When parametrized

mln L(O) = Z L(O,x;,V;)

subjectto: 6 € ()



Regularization as hard constraint

* When ()2 measured by some quantity R

mm L) = Z L(O, x;,V;)

subjectto: R(8) <r
* Example: [, regularization

mln L(O) = Z L(O,x;,V;)

subject to: ||0]|5 < r?



Regularization as soft constraint

* The hard-constraint optimization is equivalent to soft-constraint

n

) 1

min Ly (6) = EZ 16, x;, ;) + *R(6)
=1

for some regularization parameter A* > 0
* Example: [, regularization

n
R 1
=1



Regularization as soft constraint

* Showed by Lagrangian multiplier method

L£(0,1) =L(0) + A[R(6) — 1]
* Suppose 67 is the optimal for hard-constraint optimization

0F = argmln I}llag(L(H ) =L(6) + A[R(O) — 7]

* Suppose A" is the correspondmg optimal for max

6* = argmin £(6,1*) = L(0) + 1*[R(6) — 7]
0



Regularization as Bayesian prior

* Bayesian view: everything is a distribution

* Prior over the hypotheses: p(0)

* Posterior over the hypotheses: p(6 | {x;, y;})
e Likelihood: p({x;, v;}|0)

e Bayesian rule:
p(0)p({x;, y:}16)

p(O | {x;,yi}) = (v



Regularization as Bayesian prior

e Bayesian rule:
p(0)p({x;, y;:}16)

p({x;, yi})

p(O | {x;,y:}) =

* Maximum A Posteriori (MAP):

maxlogp(6 | {x; y;}) = max logp(0) +logp(ix;, i} | 6)
|

|

Regularization MLE loss



Regularization as Bayesian prior

* Example: [, loss with [, regulgrization

R 1
min L (0) = EE(fe(xi) — )% + 1]1] 12
=1

e Correspond to a normal likelihood p(x, v | €) and a normal prior p(6)



Three views

 Typical choice for optimization: soft-constraint

méi)n Lr(6) =L(6) + AR(6)

* Hard constraint and Bayesian view: conceptual; or used for derivation



Three views

* Hard-constraint preferred if
* Know the explicit bound R(0) < r
» Soft-constraint causes trapped in a local minima with small 6
* Projection back to feasible set leads to stability

e Bayesian view preferred if
* Know the prior distribution



Some examples



Classical regularization

* Norm penalty
* [, regularization
* [ regularization

* Robusthess to noise



[, regularization
R ~ (04
m@in Lr(0) = L(6) +§||3||%

* Effect on (stochastic) gradient descent
* Effect on the optimal solution



Effect on gradient descent

* Gradient of regularized objective
VL,(0) = VL(6) + ab
* Gradient descent update
0 —60—nVLles(0) =60 —nVL(O) —nab = (1 —na)d —nVL(O)
* Terminology: weight decay



Effect on the optimal solution

* Consider a quadratic approximation around 6~

£(8) ~ L(0%) + (0 — 6)TVL(6") +%(9 _0"TH(6 — 6"

e Since 8% is optimal, VL(6*) = 0
~ ~ 1
L(8) =~ L(6*) + 5(9 —09TH(O — 06%)

VL(O) =~ H(O —6*)



Effect on the optimal solution

* Gradient of regularized objective

VL,(0) ~ H(6 — 0*) + ab
* On the optimal 65

0=VLp(05) ~ H(O; — 0%) + b}
0y ~(H+al)"tHO*



Effect on the optimal solution

* The optimal
0; ~(H+al)"tHO*

* Suppose H has eigen-decomposition H = QAQ"
05 ~(H+al)"'HO* = QA+ al)~1AQT 0"

* Effect: rescale along eigenvectors of H



Effect on the optimal solution
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[, regularization

min Lr(0) = L(O) + «|l6]];

* Effect on (stochastic) gradient descent
* Effect on the optimal solution



Effect on gradient descent

* Gradient of regularized objective

VL,(0) = VL(6) + «a sign(0)
where sign applies to each elementin 6
* Gradient descent update

0 6 —nVLy(0) =60 —nVL(O) — na sign(6)



Effect on the optimal solution

* Consider a quadratic approximation around 6~

£(8) ~ L(0%) + (0 — 6)TVL(6") +%(9 _0"TH(6 — 6"

e Since 8% is optimal, VL(6*) = 0

1(8) ~ L(6%) +%(9 _09TH(6 — 6%)



Effect on the optimal solution

* Further assume that H is diagonal and positive (H;;> 0, Vi)
* not true in general but assume for getting some intuition

* The regularized objective is (ignoring constants)
- 1 )
Lr(0) = EEHii(ei —0/)° + a |6;]
i
* The optimal 05

( a
0 ——,0¢ if 6 =0
max{ LT } if 6,

(Or)i =<

a
min{@i*+H—,0} if 6; <0

i

.



Effect on the optimal solution

e Effect: induce sparsity 4 (0%)
R)i
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Effect on the optimal solution

* Further assume that H is diagonal
» Compact expression for the optimal 6,

a
(Or)i ~ sign(;) max{|0;| ———, 0}
Ll



Bayesian view

* [, regularization corresponds to Laplacian prior

p(6)  exp(a ) 16;)

logp(0) = az |0;| + constant = «||6]|; + constant
i



