Deep Learning Basics
Lecture 3: regularization I

Princeton University COS 495
Instructor: Yingyu Liang
What is regularization?

• In general: any method to prevent overfitting or help the optimization

• Specifically: additional terms in the training optimization objective to prevent overfitting or help the optimization
Overfitting example: regression using polynomials

\[t = \sin(2\pi x) + \epsilon \]
Overfitting example: regression using polynomials

Figure from *Machine Learning and Pattern Recognition*, Bishop
Overfitting

• Empirical loss and expected loss are different

• Smaller the data set, larger the difference between the two

• Larger the hypothesis class, easier to find a hypothesis that fits the difference between the two
 • Thus has small training error but large test error (overfitting)
Prevent overfitting

• Larger data set helps
• Throwing away useless hypotheses also helps

• Classical regularization: some principal ways to constrain hypotheses
• Other types of regularization: data augmentation, early stopping, etc.
Regularization as hard constraint

• Training objective

\[
\min_f \hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)
\]
subject to: \(f \in \mathcal{H} \)

• When parametrized

\[
\min_\theta \hat{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(\theta, x_i, y_i)
\]
subject to: \(\theta \in \Omega \)
Regularization as hard constraint

• When Ω measured by some quantity R

\[
\min_{\theta} \hat{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(\theta, x_i, y_i)
\]
subject to: $R(\theta) \leq r$

• Example: l_2 regularization

\[
\min_{\theta} \hat{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(\theta, x_i, y_i)
\]
subject to: $||\theta||_2^2 \leq r^2$
Regularization as soft constraint

• The hard-constraint optimization is equivalent to soft-constraint

\[
\min_\theta \hat{L}_R(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(\theta, x_i, y_i) + \lambda^* R(\theta)
\]

for some regularization parameter \(\lambda^* > 0 \)

• Example: \(l_2 \) regularization

\[
\min_\theta \hat{L}_R(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(\theta, x_i, y_i) + \lambda^* \|	heta\|_2^2
\]
Regularization as soft constraint

- Showed by Lagrangian multiplier method
 \[\mathcal{L}(\theta, \lambda) := \hat{L}(\theta) + \lambda[R(\theta) - r] \]

- Suppose \(\theta^* \) is the optimal for hard-constraint optimization
 \[\theta^* = \operatorname{argmin}_\theta \max_{\lambda \geq 0} \mathcal{L}(\theta, \lambda) := \hat{L}(\theta) + \lambda[R(\theta) - r] \]

- Suppose \(\lambda^* \) is the corresponding optimal for max
 \[\theta^* = \operatorname{argmin}_\theta \mathcal{L}(\theta, \lambda^*) := \hat{L}(\theta) + \lambda^*[R(\theta) - r] \]
Regularization as Bayesian prior

• Bayesian view: everything is a distribution

• Prior over the hypotheses: \(p(\theta) \)

• Posterior over the hypotheses: \(p(\theta \mid \{x_i, y_i\}) \)

• Likelihood: \(p(\{x_i, y_i\}\mid \theta) \)

• Bayesian rule:

\[
p(\theta \mid \{x_i, y_i\}) = \frac{p(\theta)p(\{x_i, y_i\}\mid \theta)}{p(\{x_i, y_i\})}
\]
Regularization as Bayesian prior

• Bayesian rule:

\[
p(\theta | \{x_i, y_i\}) = \frac{p(\theta)p(\{x_i, y_i\}|\theta)}{p(\{x_i, y_i\})}
\]

• Maximum A Posteriori (MAP):

\[
\max_{\theta} \log p(\theta | \{x_i, y_i\}) = \max_{\theta} \log p(\theta) + \log p(\{x_i, y_i\} | \theta)
\]

 Regularization MLE loss
Regularization as Bayesian prior

• Example: l_2 loss with l_2 regularization

$$\min_{\theta} \hat{L}_R(\theta) = \frac{1}{n} \sum_{i=1}^{n} (f_\theta(x_i) - y_i)^2 + \lambda^* ||\theta||_2^2$$

• Correspond to a normal likelihood $p(x, y \mid \theta)$ and a normal prior $p(\theta)$
Three views

• Typical choice for optimization: soft-constraint

\[\min_{\theta} \hat{L}_R(\theta) = \hat{L}(\theta) + \lambda R(\theta) \]

• Hard constraint and Bayesian view: conceptual; or used for derivation
Three views

• Hard-constraint preferred if
 • Know the explicit bound $R(\theta) \leq r$
 • Soft-constraint causes trapped in a local minima with small θ
 • Projection back to feasible set leads to stability

• Bayesian view preferred if
 • Know the prior distribution
Classical regularization

• Norm penalty
 • l_2 regularization
 • l_1 regularization

• Robustness to noise
\(l_2 \) regularization

\[
\min_{\theta} \hat{L}_R(\theta) = \hat{L}(\theta) + \frac{\alpha}{2} ||\theta||_2^2
\]

- Effect on (stochastic) gradient descent
- Effect on the optimal solution
Effect on gradient descent

• Gradient of regularized objective

\[\nabla \hat{L}_R(\theta) = \nabla \hat{L}(\theta) + \alpha \theta \]

• Gradient descent update

\[\theta \leftarrow \theta - \eta \nabla \hat{L}_R(\theta) = \theta - \eta \nabla \hat{L}(\theta) - \eta \alpha \theta = (1 - \eta \alpha)\theta - \eta \nabla \hat{L}(\theta) \]

• Terminology: weight decay
Effect on the optimal solution

• Consider a quadratic approximation around θ^*

$$
\hat{L}(\theta) \approx \hat{L}(\theta^*) + (\theta - \theta^*)^T \nabla \hat{L}(\theta^*) + \frac{1}{2} (\theta - \theta^*)^T H(\theta - \theta^*)
$$

• Since θ^* is optimal, $\nabla \hat{L}(\theta^*) = 0$

$$
\hat{L}(\theta) \approx \hat{L}(\theta^*) + \frac{1}{2} (\theta - \theta^*)^T H(\theta - \theta^*)
$$

$$
\nabla \hat{L}(\theta) \approx H(\theta - \theta^*)
$$
Effect on the optimal solution

- Gradient of regularized objective

\[\nabla \hat{L}_R(\theta) \approx H(\theta - \theta^*) + \alpha \theta \]

- On the optimal \(\theta_R^* \)

\[0 = \nabla \hat{L}_R(\theta_R^*) \approx H(\theta_R^* - \theta^*) + \alpha \theta_R^* \]

\[\theta_R^* \approx (H + \alpha I)^{-1} H \theta^* \]
Effect on the optimal solution

• The optimal

\[\theta_R^* \approx (H + \alpha I)^{-1} H \theta^* \]

• Suppose \(H \) has eigen-decomposition \(H = Q \Lambda Q^T \)

\[\theta_R^* \approx (H + \alpha I)^{-1} H \theta^* = Q(\Lambda + \alpha I)^{-1} \Lambda Q^T \theta^* \]

• Effect: rescale along eigenvectors of \(H \)
Effect on the optimal solution

Notations:
\[\theta^* = w^*, \theta_R^* = \tilde{w} \]

Figure from *Deep Learning*, Goodfellow, Bengio and Courville
l_1 regularization

$$\min_{\theta} \hat{L}_R(\theta) = \hat{L}(\theta) + \alpha \|\theta\|_1$$

- Effect on (stochastic) gradient descent
- Effect on the optimal solution
Effect on gradient descent

• Gradient of regularized objective

\[\nabla \hat{L}_R(\theta) = \nabla \hat{L}(\theta) + \alpha \text{sign}(\theta) \]

where \text{sign} applies to each element in \(\theta \)
• Gradient descent update

\[\theta \leftarrow \theta - \eta \nabla \hat{L}_R(\theta) = \theta - \eta \nabla \hat{L}(\theta) - \eta \alpha \text{sign}(\theta) \]
Effect on the optimal solution

• Consider a quadratic approximation around θ^*

\[
\hat{L}(\theta) \approx \hat{L}(\theta^*) + (\theta - \theta^*)^T \nabla \hat{L}(\theta^*) + \frac{1}{2} (\theta - \theta^*)^T H(\theta - \theta^*)
\]

• Since θ^* is optimal, $\nabla \hat{L}(\theta^*) = 0$

\[
\hat{L}(\theta) \approx \hat{L}(\theta^*) + \frac{1}{2} (\theta - \theta^*)^T H(\theta - \theta^*)
\]
Effect on the optimal solution

• Further assume that \(H \) is diagonal, so regularized objective is

\[
\hat{L}_R(\theta) \approx \sum_i \frac{1}{2} H_{ii} (\theta_i - \theta_i^*)^2 + \alpha |\theta_i|
\]

• The optimal \(\theta_R^* \)

\[
(\theta_R^*)_i \approx \begin{cases}
\max \left\{ \theta_i^* - \frac{\alpha}{H_{ii}}, 0 \right\} & \text{if } \theta_i^* \geq 0 \\
\min \left\{ \theta_i^* + \frac{\alpha}{H_{ii}}, 0 \right\} & \text{if } \theta_i^* < 0
\end{cases}
\]
Effect on the optimal solution

• Effect: induce sparsity
Effect on the optimal solution

• Further assume that H is diagonal
• Compact expression for the optimal θ^*_R

$$(\theta^*_R)_i \approx \text{sign}(\theta^*_i) \max\{|\theta^*_i| - \frac{\alpha}{H_{ii}}, 0\}$$
Bayesian view

- l_1 regularization corresponds to Laplacian prior

\[p(\theta) \propto \exp(\alpha \sum_i |\theta_i|) \]

\[
\log p(\theta) = \alpha \sum_i |\theta_i| + \text{constant} = \alpha ||\theta||_1 + \text{constant}
\]