Deep Learning Basics
Lecture 10: Neural Language Models

Princeton University COS 495

Instructor: Yingyu Liang

Natural language Processing (NLP)

* The processing of the human languages by computers

* One of the oldest Al tasks
* One of the most important Al tasks

* One of the hottest Al tasks nowadays

Difficulty

* Difficulty 1: ambiguous, typically no formal description

* Example: “We saw her duck.”

* 1. We looked at a duck that belonged to her.

* 2. We looked at her quickly squat down to avoid something.
* 3. We use a saw to cut her duck.

Difficulty

e Difficulty 2: computers do not have human concepts

* Exampte: “She like little animals. For example, yesterday we saw her
duck.”

* 1. We looked at a duck that belonged to her.

Statistical language model

Probabilistic view

* Use probabilistic distribution to model the language
e Dates back to Shannon (information theory; bits in the message)

Statistical language model

* Language model: probability distribution over sequences of tokens
e Typically, tokens are words, and distribution is discrete

* Tokens can also be characters or even bytes

* Sentence: “the quick brown fox jumps over the lazy dog”

Tokens: x; X, X3 X4 Xg Xg X7 Xg Xg

Statistical language model

* For simplification, consider fixed length sequence of tokens (sentence)

(le X2y X3y ey Xg—1,) x’c)

* Probabilistic model:

Plx{, x5, X3, e, X7_q, Xf]

N-gram model

n-gram model

* n-gram: sequence of n tokens

* n-gram model: define the conditional probability of the n-th token
given the preceding n — 1 tokens

Plxq, %5, o, x;] = Plxq, oo, %11
t

Plxe[xe—n+1, s Xe—1]

T
=n

n-gram model

* n-gram: sequence of n tokens

* n-gram model: define the conditional probability of the n-th token
given the preceding n — 1 tokens

Plxy, x5, .., x7] = Plxq, ., 1]
t

T
Ploe|xe—nt1 oor Xe1]

n

Markovian assumptions

Typical n-gram model

*n = 1:unigram
en = 2: bigram
*n = 3:trigram

Training n-gram model

 Straightforward counting: counting the co-occurrence of the grams

For all grams (x;_,, 41, ..., X¢—1, X¢)

* 1. count and estimate P[x;_, 41, ..., X1, X¢]

* 2. count and estimate P[x;_,41, ..., Xr_1]

* 3. compute R

P[xt—n+1' ---;xt—lyxt]

p[xt—n+1’ "t xt—l]

E\)[xtlxt—n+1» Rk xt—l] —

A simple trigram example

* Sentence: “the dog ran away”
P[the dog ran away] = P[the dog ran] P[away|dog ran]

Pl[dog ran away]

P[the dog ran away] = P[the dog ran] —
Pldog ran]

Drawback

e Sparsity issue: P[...] most likely to be 0

* Bad case: “dog ran away” never appear in the training corpus, so
Pldog ran away]| =0

* Even worse: “dog ran” never appear in the training corpus, so
Pldog ran] =0

Rectify: smoothing

* Basic method: adding non-zero probability mass to zero entries

e Back-off methods: restore to lower order statistics

* Example: if Plaway|dog ran] does not work, use P[away|ran] as
replacement

* Mixture methods: use a linear combination of P[away|ran] and

P

Plaway|dog ran]

Drawback

* High dimesion: # of grams too large

* Vocabulary size: about 10k=2/14
e #itrigram: about 2742

Rectify: clustering

* Class-based language models: cluster tokens into classes; replace
each token with its class

* Significantly reduces the vocabulary size; also address sparsity issue

* Combinations of smoothing and clustering are also possible

Neural language model

Neural Language Models

* Language model designed for modeling natural language sequences
by using a distributed representation of words

* Distributed representation: embed each word as a real vector (also
called word embedding)

* Language model: functions that act on the vectors

Distributed vs Symbolic representation

* Symbolic representation: can be viewed as one-hot vector
* Token [in the vocabulary is represented as e;

-th entry

* Can be viewed as a special case of distributed representation

Distributed vs Symbolic representation

* Word embeddings: used for real value computation (instead of
logic/grammar derivation, or discrete probabilistic model)

* Hope that real value computation corresponds to semantics
* Example: inner products correspond to token similarities

* One-hot vectors: every pair of words has inner product 0

Co-occurrence

* Firth’s Hypothesis (1957): the meaning of a word is defined by “the
company it keeps”

!

w

Plw,w']
e Use the co-occurrence of the word as its vector:

v, = P[w,:]

Co-occurrence

* Firth’s Hypothesis (1957): the meaning of a word is defined by “the
company it keeps”

N\

-W///" Can replace with context
P[W, ‘) such as a phrase

e Use the co-occurrence of the word as its vector:

Drawback

* High dimensionality: equal vocabulary size (~10k)
e can be even higher if context is used

Latent semantic analysis (LSA)

* LSA by Deerwester et al., 1990: low rank approx. of co-occurrence

M X Y

row vector for the word w

Variants

* low rank approx. of the transformed co-occurrence

M X Y

~ row vector fOF the word w
Plw,w’']

Or PMI(w,w') = In

State-of-the-art word embeddin;

INFUT PROJECTION OUTPUT

o\
7

Word2vec

* Continous-Bag-Of-Words

Figure from wi(t+1)
Efficient Estimation of Word

Representations in Vector Space,

By Mikolov, Chen, Corrado, Dean wi(t+2)

cBOW

Plwe Wiy, ooy Wiip]| & exp[vyy, -mean(th_z, ...,UWHZ)]

Linear structure for analogies

e Semantic: “man:woman::king:queen”

Vman — Ywoman = Vking — Vqueen

 Syntatic: “run:running::walk:walking”

Urun = Vrunning = Vwalk — Vwalking

1.5

0.5

-0.5

-1.5

Country and Capital Vectors Projected by PCA

' " Chinax | '
*Beijing
B Russia«
Japarx
i Moscow
Turkey sAnkara ~*Tokyo
Poland«
= Germany«
Francex ANarsaw
» —Berlin
= Italy« Paris
#Athens
Greeces "
L Spair¢ Rome
* *Madrid
— Portugal JLisbon
1 | 1] 1] 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5

GloVe: Global Vector

* Suppose the co-occurrence between word i and word j is X;;
* The word vector for word i is w; and w;
* The GloVe objective function is

Vv
1= 3 (00) 075+~ tog)

i,j=1

* Where b/s are bias terms, f(x) = min{100, x3/*}

Advertisement

Lots of mysterious things

What are the reasons behind

* The weird transformation on the co-occurrence?
* The model of word2vec?

* The objective of GloVe? The hyperparameters (weights, bias, etc)?
What are the connections between them? A unified framework?
Why do the word vector have linear structure for analogies?

Advertisement

* We proposed a generative model with theoretical analysis:
RAND-WALK: A Latent Variable Model Approach to Word Embeddings

* Next lecture by Tengyu Ma, presenting this work

Can’t miss!

http://arxiv.org/abs/1502.03520

