
Deep Learning Basics
Lecture 10: Neural Language Models

Princeton University COS 495

Instructor: Yingyu Liang

Natural language Processing (NLP)

• The processing of the human languages by computers

• One of the oldest AI tasks

• One of the most important AI tasks

• One of the hottest AI tasks nowadays

Difficulty

• Difficulty 1: ambiguous, typically no formal description

• Example: “We saw her duck.”

• 1. We looked at a duck that belonged to her.

• 2. We looked at her quickly squat down to avoid something.

• 3. We use a saw to cut her duck.

Difficulty

• Difficulty 2: computers do not have human concepts

• Example: “She like little animals. For example, yesterday we saw her
duck.”

• 1. We looked at a duck that belonged to her.

• 2. We looked at her quickly squat down to avoid something.

• 3. We use a saw to cut her duck.

Statistical language model

Probabilistic view

• Use probabilistic distribution to model the language

• Dates back to Shannon (information theory; bits in the message)

Statistical language model

• Language model: probability distribution over sequences of tokens

• Typically, tokens are words, and distribution is discrete

• Tokens can also be characters or even bytes

• Sentence: “the quick brown fox jumps over the lazy dog”

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9Tokens:

Statistical language model

• For simplification, consider fixed length sequence of tokens (sentence)

• Probabilistic model:

(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝜏−1, 𝑥𝜏)

P [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝜏−1, 𝑥𝜏]

N-gram model

n-gram model

• 𝑛-gram: sequence of 𝑛 tokens

• 𝑛-gram model: define the conditional probability of the 𝑛-th token
given the preceding 𝑛 − 1 tokens

P 𝑥1, 𝑥2, … , 𝑥𝜏 = P 𝑥1, … , 𝑥𝑛−1 ෑ

𝑡=𝑛

𝜏

P[𝑥𝑡|𝑥𝑡−𝑛+1, … , 𝑥𝑡−1]

n-gram model

• 𝑛-gram: sequence of 𝑛 tokens

• 𝑛-gram model: define the conditional probability of the 𝑛-th token
given the preceding 𝑛 − 1 tokens

P 𝑥1, 𝑥2, … , 𝑥𝜏 = P 𝑥1, … , 𝑥𝑛−1 ෑ

𝑡=𝑛

𝜏

P[𝑥𝑡|𝑥𝑡−𝑛+1, … , 𝑥𝑡−1]

Markovian assumptions

Typical 𝑛-gram model

• 𝑛 = 1: unigram

• 𝑛 = 2: bigram

• 𝑛 = 3: trigram

Training 𝑛-gram model

• Straightforward counting: counting the co-occurrence of the grams

For all grams (𝑥𝑡−𝑛+1, … , 𝑥𝑡−1, 𝑥𝑡)

• 1. count and estimate ෠P[𝑥𝑡−𝑛+1, … , 𝑥𝑡−1, 𝑥𝑡]

• 2. count and estimate ෠P 𝑥𝑡−𝑛+1, … , 𝑥𝑡−1
• 3. compute

෠P 𝑥𝑡 𝑥𝑡−𝑛+1, … , 𝑥𝑡−1 =
෠P 𝑥𝑡−𝑛+1, … , 𝑥𝑡−1, 𝑥𝑡
෠P 𝑥𝑡−𝑛+1, … , 𝑥𝑡−1

A simple trigram example

• Sentence: “the dog ran away”

෠P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 = ෠P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 ෠P[𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛]

෠P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 = ෠P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛
෠P[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦]

෠P[𝑑𝑜𝑔 𝑟𝑎𝑛]

Drawback

• Sparsity issue: ෠P … most likely to be 0

• Bad case: “dog ran away” never appear in the training corpus, so
෠P[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦] = 0

• Even worse: “dog ran” never appear in the training corpus, so
෠P[𝑑𝑜𝑔 𝑟𝑎𝑛] = 0

Rectify: smoothing

• Basic method: adding non-zero probability mass to zero entries

• Back-off methods: restore to lower order statistics

• Example: if ෠P[𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛] does not work, use ෠P 𝑎𝑤𝑎𝑦 𝑟𝑎𝑛 as
replacement

• Mixture methods: use a linear combination of ෠P 𝑎𝑤𝑎𝑦 𝑟𝑎𝑛 and
෠P[𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛]

Drawback

• High dimesion: # of grams too large

• Vocabulary size: about 10k=2^14

• #trigram: about 2^42

Rectify: clustering

• Class-based language models: cluster tokens into classes; replace
each token with its class

• Significantly reduces the vocabulary size; also address sparsity issue

• Combinations of smoothing and clustering are also possible

Neural language model

Neural Language Models

• Language model designed for modeling natural language sequences
by using a distributed representation of words

• Distributed representation: embed each word as a real vector (also
called word embedding)

• Language model: functions that act on the vectors

Distributed vs Symbolic representation

• Symbolic representation: can be viewed as one-hot vector

• Token 𝑖 in the vocabulary is represented as 𝑒𝑖

• Can be viewed as a special case of distributed representation

0 0 0 0 1 0 0 0 0 0

𝑖-th entry

Distributed vs Symbolic representation

• Word embeddings: used for real value computation (instead of
logic/grammar derivation, or discrete probabilistic model)

• Hope that real value computation corresponds to semantics

• Example: inner products correspond to token similarities

• One-hot vectors: every pair of words has inner product 0

Co-occurrence

• Firth’s Hypothesis (1957): the meaning of a word is defined by “the
company it keeps”

• Use the co-occurrence of the word as its vector:

෠𝑃[𝑤,𝑤′]

𝑤

𝑤′

𝑣𝑤 ≔ ෠𝑃[𝑤, :]

Co-occurrence

• Firth’s Hypothesis (1957): the meaning of a word is defined by “the
company it keeps”

• Use the co-occurrence of the word as its vector:

෠𝑃[𝑤, 𝑐]

𝑤

𝑐

𝑣𝑤 ≔ ෠𝑃[𝑤, :]

Can replace with context
such as a phrase

Drawback

• High dimensionality: equal vocabulary size (~10k)

• can be even higher if context is used

Latent semantic analysis (LSA)

• LSA by Deerwester et al., 1990: low rank approx. of co-occurrence

≈

row vector for the word ෠𝑃[𝑤,𝑤′]

𝑀 𝑋 𝑌

𝑤

𝑤

Variants

• low rank approx. of the transformed co-occurrence

≈

row vector for the word
෠𝑃 𝑤,𝑤′

𝑀 𝑋 𝑌

𝑤

𝑤

Or PMI w,w′ = ln
෠𝑃[𝑤,𝑤′]

෠𝑃[𝑤] ෠𝑃[𝑤′]

State-of-the-art word embeddings
Updated on April 2016

Word2vec

• Continous-Bag-Of-Words

Figure from
Efficient Estimation of Word
Representations in Vector Space,
By Mikolov, Chen, Corrado, Dean

P 𝑤𝑡 𝑤𝑡−2, … , 𝑤𝑡+2 ∝ exp[𝑣𝑤𝑡
⋅ 𝑚𝑒𝑎𝑛 𝑣𝑤𝑡−2

, … , 𝑣𝑤𝑡+2
]

Linear structure for analogies

• Semantic: “man:woman::king:queen”

• Syntatic: “run:running::walk:walking”

𝑣𝑚𝑎𝑛 − 𝑣𝑤𝑜𝑚𝑎𝑛 ≈ 𝑣𝑘𝑖𝑛𝑔 − 𝑣𝑞𝑢𝑒𝑒𝑛

𝑣𝑟𝑢𝑛 − 𝑣𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ≈ 𝑣𝑤𝑎𝑙𝑘 − 𝑣𝑤𝑎𝑙𝑘𝑖𝑛𝑔

GloVe: Global Vector

• Suppose the co-occurrence between word 𝑖 and word 𝑗 is 𝑋𝑖𝑗

• The word vector for word 𝑖 is 𝑤𝑖 and ෦𝑤𝑖

• The GloVe objective function is

• Where 𝑏𝑖
′𝑠 are bias terms, 𝑓 𝑥 = 𝑚𝑖𝑛{100, 𝑥3/4}

Advertisement

Lots of mysterious things

What are the reasons behind

• The weird transformation on the co-occurrence?

• The model of word2vec?

• The objective of GloVe? The hyperparameters (weights, bias, etc)?

What are the connections between them? A unified framework?

Why do the word vector have linear structure for analogies?

Advertisement

• We proposed a generative model with theoretical analysis:

RAND-WALK: A Latent Variable Model Approach to Word Embeddings

• Next lecture by Tengyu Ma, presenting this work

Can’t miss!

http://arxiv.org/abs/1502.03520

