Princeton COS 495: Introduction to Deep Learning
Homework 2

Lecturer: Yingyu Liang Due date: Mar 30th, 2016
TA: Bochao Wang Office: Electrical Engineering Department, C319B

1. (Math) Recall that when ¢; regularization is used, and assuming that the Hessian matrix
is diagonal with positive entries, the objective function can be approximated by

d
Lr(0)=>_ |

i=1

Hii(0; — 07)% + o) 6;]]

N | —

Solve this in the close form expression: show that the optimal solution 67, for the objective
LRr(0) is that as shown on slide 26 of ”Deep learning basics lecture 3: Regularization 1”.
Hint: note that o/ H;; > 0.

2. (Math) Consider a three layer network:

ht = o(Wle), h? = o(W?2hY), f(z) = (w3, h?).

of
oWl

3y

See Figure 1| for an illustration. Compute

Wl WZ

2
®- i A

2
®- . g

Figure 1: An illustration of the three layer network

3. (Coding) Choose a software framework. A few candidates:

Marvin http://marvin.is/

Tensorflow https://www.tensorflow.org/

Caffe http://caffe.berkeleyvision.org/

Pylearn2 http://deeplearning.net/software/pylearn2/

Read the tutorial, try it on MNIST, so you can reuse the data downloaded for the last
homework. (Note that the first examples in the tutorials are typically on MNIST, so you
can follow the steps.) More precisely, build a three layer feedforward network:

z — h' = h? = p(y|h?).


http://marvin.is/
https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
http://deeplearning.net/software/pylearn2/

The hidden layers h' and h? have dimension 500. Train the network for 250 epochsﬂ and
test the classification error. Do not use regularizations. Plot the cross entropy loss on the
batches and also plot the classification error on the validation data.

Comments: you can also use another data set, like CIFAR10 or CIFAR100. Or you can
pick your own data set.

4. (Coding) Repeat the above experiment, but train the network with the following regu-
larizations:

e (5 regularization

e Dropout

e Early stopping

Compare with the results in the previous experiment.

Comments: no need to implement them by your own; the software framework typically
provides implementations for ¢o regularization and dropout. Early stopping is done in
training, so you only need to tune your training code slightly.

!Each epoch is a pass over the training data. Suppose you use batches of size b, and the training data set
has n points, then an epoch consists of n/b batches. Note that you can divide the data set into batches, and
then round robin over the batches. You can also randomly sample say 64 points for each batch. Either way
is OK, and typically there is no performance difference between them. When these batches are randomly
sampled, it is possible that some point are not in any of them, but we still call these batches a pass over the
data.



