
1

1

Extracting Information
from

Social Networks

Reminder: Social networks

•  Catch-all term for
– social networking sites

•  Facebook

– microblogging sites
•  Twitter

– blog sites (for some purposes)

2

Ways we can use social
networks to find information

ü Extract meta-information for “regular” Web
search
–  site information
–  site properties

•  Extract information to use directly
– search content of social site
– aggregate information from site content
–  information from structure of social network

3

Searching social network content

•  How does searching a social network site
differ from searching the Web with a SE?

•  Does this affect
–  indexing?
– query evaluation?

•  social site - Facebook
•  microblog site - Twitter

4

2

Searching Facebook

•  search for objects (e.g. people) as well as
information

•  focused searches
– people
–  friends
– photos

•  link structure central
–  find friends who …

•  updates important
•  other? 5

Searching Twitter vs Web:
User behavior

•  Study by Teevan, Ramage and Morris pub. 2011

•  Experimental setup
–  data from browser logs from Bing Toolbar
–  harvest queries issued to search engines

•  “general purpose” : Bing, Google, Yahoo
•  “vertical search engines”: Twitter
•  associate with user IDs and timestamps

–  Sampled 126,316 queries to Twitter
•  subset of 33,405 users

–  2.5 million queries by same subset users from Bing,
Google, Yahoo 6

Teevan et al results

•  unsurprising:
–  top 10 Web searches navigational
–  top 10 Twitter queries mixed celebrities,

movies, games, memes (eg
“#theresway2many”): popular items

•  more surprising:
– 23.19% Twitter queries issued only once,

vs 49.73% Web
– 55.76% Twitter queries issued more than once

by same user, vs 34.71% Web

7

more results Teevan, Ramage and Morris

•  temporal characteristics
–  session = series queries by user “in close

succession”. Use 15 min. inactive as delimiter
–  Twitter sessions shorter: 2.2 queries vs 2.88 Web
–  9.38 sec btwn Twitter queries in session vs 13.63

•  combined Twitter, Web searches
–  informational: monitor with Twitter, learn with Web
–  61.92% of time start on Web
–  20.56 sec. btwn queries in a session
–  6.13 queries per session
–  43.74% queries issued to both in one session

• 

8

3

Twitter characteristics that may
change search approach?

•  history more important – Twitter findings
•  recency more imporant – trending
•  popularity more important?
•  labels available – hashtags
•  other?

9

Searching Social Networks:
system demands

•  Twitter Earlybird 2012
•  Facebook Unicorn 2013

10

Earlybird: Real-Time Search at Twitter
by many Twitter researchers (2012)

•  Designed for properties of tweets
– Handle high rate of queries
– Handle large number updates in real time

•  “Flash crowds”
•  Update info, eg number of retweets

– Large number concurrent reads and writes
– Time stamp dominant ranking signal

11

Elements

•  Distributed server architecture
– Tweets hash partitioned across servers

•  New concurrency management
•  Customized query processing
•  Customized inverted index

12

4

Query processing

Ø Full Boolean query language
Ø Results returned most recent first
•  Personalized signals in relevance

algorithm (not described)
– User’s local social graph
–  “actual query algorithm isn’t particularly

interesting”
“reuse existing Lucene query eval code”

13

Inverted Index

•  Organized in segments
– Each server has small number segments (12)
– Each segment has small number tweets, ≤ 223
– Only one segment active

•  can modify
–  In-active segments read-only

•  Optimize for compression and query eval

14

Dictionary
•  Hash table

– No binary search
– No wildcard queries

•  Term => term ID
– Monotonically increasing in order seen

•  Parallel arrays for data
– Number of postings in postings list for term
– Pointer to tail of the postings list
– Each array indexed by term ID

15

Active segment index
•  Posting is 32-bit integer

– 24 bits doc ID; 8 bits term position
– each occurrence in tweet is new posting

•  Postings list: pre-allocated integer array
– Dynamic allocation

•  Traversing newest first = iterate bkwds
•  Can traverse bkwds from any point

while concurrently adding new postings
•  Can binary search for doc ID

– Eliminate need skip pointers 16

5

Dynamic space allocation
•  Addresses wide variation in postings list sizes

–  Zipf’s law

•  Uses 4 dynamic arrays called pools
–  A pools holds “slices” of a certain size
–  A slice is part of a postings list
–  Slice sizes 21, 24, 27, 211

•  A posting list starts in a slice of the smallest pool
•  When fills slice in a pool, continue list in larger pool
•  Can use many slices in largest pool
•  Slices linked together with pointers: large to small
•  Tail of postings list in largest pool occupied 17

In-active segments

•  Replaces an active segment when done
•  One fixed-size integer array

– Dictionary points to different postings lists
•  Arranged reverse chronologically
•  Compressed

–  Short postings list: as before
–  Long postings list:

•  uses gaps
•  block-based compression

18

Earlybird performance

•  Compare prior MySQL-based
– 1000 tweets per second indexing
– 12,000 queries per second

•  Earlybird memory
– Full active index segment (16M tweets) 6.7 GB
– Full in-active index segment ~ 55% above

•  Queries per second
– 5000 for fully-loaded server (114M tweets)

•  Tweets per second
– 7000 in “stress test”- heavy query load 19

Unicorn: A System for Searching the
Social Graph

by many Facebook researchers (2013)

•  primary backend for Facebook Graph Search
•  “designed to search trillions of edges

between tens of billions of users and entities
and entities on thousands of commodity
servers”

•  thousands of edge types used
–  including obvious “friend” “like”

•  graph sparse:
–  typical node < 1000 edges
–  average user has ~130 friends 20

6

Unicorn: graph querying

•  query language on edge relationships
“find female friends of user 6” becomes query
(and friend:6 gender:1) intersection of sets

•  supports queries on paths
–  rounds of basic query evaluation

“find pages liked by friends of user 7 who like Emacs (object 42)”
becomes
(and friend:7 likers:42) giving {resultID1, …, resultIDk}
followed by
(or likes:resultID1 … likes:resultIDk)

–  does through APPLY operator
(apply likes: (and friend:7 likers:42))

21

Unicorn APPLY operator

•  applies “or” to results of inner query
(apply likes: (and friend:7 likers:42))

•  can nest APPLY arbitrarily deep
–  friends of friends of friends of friends of user 21

(apply friend:(apply friend:(friend 21)))

•  limit on number results of inner query
–  solution: drop some results
–  issue: performance
–  cut-off ~100,000 terms applied to outer query

22

Unicorn: index struture

•  index represents adjacency list
•  index term <edge-type>:<id>

–  friend:5 points to list of friends of userID 5

•  form of adj. list entry:
–  ((sortkey, userID), other info)
–  nodes on adjacency list sorted first by sortkey,

then by userID

23

Unicorn: some details

•  Distributed architecture: partition by resultIDs
–  Graceful degradation lose machine

•  “index servers” store partial indexes
•  Store “few billion” index terms

•  “top aggregator” => “rack aggregators” =>
“index servers”

•  APPLY operator evaluated by “top
aggregator” merging intermediate results

24

7

Unicorn performance

query “people who like computer science”
•  > 6 million results - ask for 100 returned
•  run 100 times
•  average performance

–  latency 11 ms
–  aggregate CPU across 37 index servers 31.22 ms

query “friends of likers of computer science”
•  for APPLY with trunction limit 105, latency almost 2 sec.
•  for APPLY with trunction limit 103, latency about 100ms

25

