

Refining after search

Use user feedback

- or pseudo-feedback
 - Approximate feedback with first results
- or implicit feedback
 - e.g. clicks
- change ranking of current results
- search again with modified query
- change ranking for future searches

5

7

Explicit user feedback

- User must participate
- User marks (some) relevant results
 or
- · User changes order of results
 - Can be more nuanced than relevant or not
 - Can be less accurate than relevant or not
 - Example: User moves 10th item to first
 - $-\operatorname{says}$ 10th better than first 9
 - Does not say which, if any, of first 9 relevant

Implicit user feedback

- Click-throughs
 - Use as relevance judgment
 - Use as reranking: When click result, moves it ahead of all results
 - didn' t click that come before it
 - Problems?
- Better implicit feedback signals?

User feedback in classic vector model

- User marks top p documents for relevance
 - p = 10 to 20 "typical"
- Construct new weights for terms in query vector
 - Modifies query
 - Could use just on initial results to re-rank

8

Deriving new query for vector model

For collection C of n doc.s

 Let C_r denote set all relevant docs in collection,

Perfect knowledge Goal:

Vector **q**_{opt} =

 $1/|C_r| * (sum of all vectors d_j in C_r) - 1/(n-|C_r|) * (sum of all vectors d_k not in C_r)$

centroids

9

Deriving new query for vector model: Rocchio algorithm

Give query **q** and relevance judgments for a subset of retrieved docs

- · Let D_r denote set of docs judged relevant
- + Let D_{nr} denote set of docs judged not relevant

Modified query:

Vector $\mathbf{q}_{new} = \alpha \mathbf{q} + \beta/|D_r|^*$ (sum of all vectors \mathbf{d}_j in D_r) - $\gamma/(|D_{nr}|)^*$ (sum of all vectors \mathbf{d}_k in D_{nr})

For tunable weights α , β , γ

Remarks on new query

- α: importance original query
- β: importance effect of terms in relevant docs
- γ: importance effect of terms in docs not relevant
- Usually terms of docs not relevant are least important
 - Reasonable values α =1, β =.75, γ =.15
- · Reweighting terms leads to long queries
 - **Many** more non-zero elements in query vector $\boldsymbol{q}_{\text{new}}$
 - Can reweight only most important (frequent?) terms
- · Most useful to improve recall
- Users don't like: work + wait for new results 11

Simple example user feedback in vector model

10

12

- **q** = (1,1,0,0)
- Relevant: **d1** = (1,0,1,1) **d2** = (1,1,1,1)
- Not relevant: **d3**=(0,1,1,0)
- α, β, γ **= 1**
- $\mathbf{q}_{\text{new}} = (1,1,0,0) + (1, 1/2, 1, 1) (0,1,1,0)$
 - = (2, 1/2, 0, 1)

Term weights change New term

Observe: Can get negative weights

- Can disambiguate within given results
 jaguar car versus jaguar animal
- Can modify rankings for future searches
- Algorithms usually based on machine learning

13

15

- Learn ranking function that best matches partial ranking(s) given
- · Simpler strategies:
 - use for repeat of same search
 - · user reorder or select best
 - Google experiment circa 2007

Behavior History

- Going beyond behavior on *same* query.
- Personal history versus Crowd history
 - Crowd history
 - · Primarily search history
 - Google's claim Bing copies
 - Personal history
 - · characterize behavior
 - characterize interests: topics
 - what use?

14

16

Personal History: sources

- Your searches
- Your social networks
 - Your content
- Other behavior browsing, mail?, ...

Collaborative history

- History of people "like" you
- How get?
 - For "free": social networks
 - friends, lists, ...
 - Deduce: Crowd history + personal history
 recommendations
- · How characterize?
 - Shared behaviors
 - Shared topics

Ways we can use social networks to find information

17

19

- Search site
- Aggregate site information to get trends
- Use site information as meta-information for search
- Use site properties as meta-information for search

- microblogging sites
- Twitter
- blog sites (for some purposes)
- Now interested in social networks in content sense.
 - not totality of Web
 - not Wikipedia encyclopedia pages
 - yes Wikipedia talk pages?

Use site information as metainformation for search

18

- disambiguate queries (Teeven et al 2011 suggested)
 search Twitter with query
 - analyze content of matching tweets to identify most current, most popular meaning
- factor in ranking URLs (Dong et. al. 2010 studied)
 - harvest URLs mentioned in tweets
 - associate a URL with tweeted text surrounding it
- other uses for tweet text?
- similar analyses of social networking sites such as Facebook?

Use site properties as metainformation for search

- interactions: friends, followers, likes, retweets, more?
- Uses
 - ranking by popularity of content
 - ranking by influence of author
- temporal relevance
 - ranking
 - discover URLs faster (Dong et. al. 2010)

21