
1

Recommender Systems

1 2

Recommender Systems
•  Look at classic model and techniques

–  Items
–  Users
–  Recommend Items to Users

•  Recommend new items based on:
–  similarity to items user liked in past: individual history
“Content Filtering”

–  Liked by other users similar to this user: collaborative
history
“Collaborative Filtering”

–  Liked by other users: crowd history
•  easier case

3

Recommender System attributes

•  Need explicit or implicit ratings by user
–  Purchase is 0/1 rating

•  Movie tickets
•  Books

•  Have focused category
–  examples: music, courses, restaurants
–  hard to cross categories with content-based
–  easier to cross categories with collaborative-based

•  users share tastes across categories?
4

Content Filtering
•  Items must have characteristics
•  user values item

⇒  values characteristics of item
•  model each item as vector of weights of

characteristics
– much like vector-based IR

•  user can give explicit preferences for
certain characteristics

2

Buy/no buy prediction method:
similarity with centroid

•  Average vectors of items user bought
– user’s centroid

•  Find similarity of new items to user’s centroid

•  Decide threshold for “buy” recommendation

5
6

Example
•  user bought book 1 and book 2
•  Average books bought = (0, 1, 0.5, 0)
•  Score new books

–  dot product gives: score(A) = 0.5; score (B)= 1
•  decide threshold for recommendation

1st person romance mystery sci-fi

book 1 0 1 1 0

book 2 0 1 0 0

new book A 1 .5 0 0

new book B 0 1 0 .2

7

Method issues

•  Centroid best way to build a preference vector?

•  What metric use for similarity between new
items and preference vector?
-  Normalization?

•  What if users give ratings?
-  Centroid per rating value?

•  how include explicit user preferences

•  How determine threshold?

8

Example with explicit user preferences
How use scores of books bought?

Try: preference vector p where component k =
user pref for characteristic k if ≠ 0
avg. comp. k of books bought when user pref =0

 0 pref for user = “don’t care”

p=(0, 1, 0.5, -5)
New scores?

p•A = 0.5
p•B = 0

1st per rom mys sci-fi

user pref 0 1 0 -5

book 1 0 1 1 0

book 2 0 1 0 0

new A 1 .5 0 0

new B 0 1 0 .2

3

Other methods: machine learning

•  Major alternatives based on classifiers
– Training set: items bought and not bought
– Train classifier – many algorithms
– Classify new item as buy/no buy

•  Observations
– Uses books not bought. Problems?
– Multiple rating value

Can use multiple classes
9 10

Limitations of Content Filtering

•  Can only recommend items similar to
those user rated highly

•  New users
–  Insufficient number of rated items

•  Only consider features explicitly
associated with items
– Do not include attributes of user

Applying content filtering
methods to search

•  Characterize documents (info. objects)
–  topic analysis?
– other properties, e.g.:

•  Domain of source
•  Date of publication/update

•  Characterize individuals
–  deduce from properties of objects interact with
–  user provided preferences

11

Applying content filtering
methods to search, cont.

•  Query filters documents to consider
– Convert query to topic-based?

•  Too error prone?

– Modify query to bias towards user’s
preferred topics?

•  Ranking is recommendation
– Use similarity to user’s characterization

12

4

Example study:
Personalizing Web Search Using Long-term

Browsing History (in WSDM11)

•  Goal: rerank
–  top 50 results from Google query

•  Query is initial filter to get results from Google

•  Strategy:
–  score snippets from search result against user profile
–  rerank based on snippet score

13

Personalizing Web Search Using Long-term Browsing History, cont

User Characterization
•  Selection of info

–  list of visited URLs w/ number visits
–  list of past search queries and pages clicked
–  list of terms with weights for content of pages visited

•  Studies selection of methods
–  what sources of terms use

•  body, title tags, metainfo like keywords
–  weights for terms

•  tf-idf
– where get idf?

•  “modified BM25”- a “log odds measure” 14 best

WmodBM25 weighting

N = # documents on Web – estimated
nti = # docs on Web containing term ti - estimated
R = # documents in user browser history
rti = # docs in user browser history that contain term ti

WmodBM25(ti) =

 ((rti + 0.5)(N – nti + 0.5))

 ((nti + 0.5)(R - rti + 0.5))

15

log

Personalizing Web Search Using Long-term Browsing History, cont

Documents

•  Characterization
– words in snippet
– original rank by Google search

•  Scoring
– best performing: language-based model

•  based on content (terms)
•  adjustments for

– URLs previously visited
– original rank of snippet in search

16

5

Scoring a snippet

Nsi= # unique words in snippet si

rsi = rank of snippet si in original search results
ni = # previous visits by user to web page with snippet si
w(tk) = weigth of term tk in user profile
wtotal = sum of all term weights in user profile

scorelang. model (si) = Σk=0 log ((w(tk) +1)/wtotal)

•  modif. for URLs previously visited:

scorew/URL(si)= score(si)*(1+α*ni) parameter α

•  modif to acct. for orig. rank:
scorew/orig(si) = score(si)*(1/(1+log (rsi)))

17

Nsi

Personalizing Web Search Using Long-term Browsing History
Evaluation

•  “offline” evaluation:

–  relevance judgments by volunteers
– used to select best of algorithmic variations

•  online evaluation of best variations:
– add-on to Browser by volunteers
–  interleave original results (no

personalization) with results reranked by
snippet score

–  record clicks by user – which list from
18

Personalizing Web Search Using Long-term Browsing History
Results

•  Offline: normalized DCG, avg. of 72 queries

–  Google’s ranking w/out personalization: 0.502
–  best-performing of variations for reranking: 0.573

•  Online
–  8% queries: # clicks from original and reranked same
–  of rest: 60.5% queries: more clicks from reranked
 39.5% queries: more clicks from original

Observation
•  Reranking can be done completely in browser if

enough space for data for user profile 19

What we’ve just seen:
   Applying content filtering to search

Now back to recommender systems:
   Collaborative Filtering

20

6

21

Collaborative Filtering
•  Recommend new items liked by other

users similar to this user
•  need items already rated by user and

other users
•  don’t need characteristics of items

– each rating by individual user becomes
characteristic

•  Can combine with item characteristics
–  hybrid content/collaborative

22

Major method types

•  Nearest neighbor
– Use similarity function
– Prediction based on previously rated items

•  Matrix Factorization
– “Latent factors”
– Matrix decomposition

•  Both use (user × item) matrix
–  vector similarity

23

Example of nearest neighbor:
Preliminaries

•  Notation
–  r(u,i) = rating of ith item by user u
–  I u = set of items rated by user u
–  Iu,v = set of items rated by both users u and v
– Ui,j = set of users that rated items i and j

•  Adjust scales for user differences
– Use average rating by user u:
 ru

avg = (1/|Iu|) * ∑ r(u,i)

– Adjusted ratings: radj(u,i) = r(u,i) - ru
avg

i in Iu

24

One choice of similarity function:
User Similarities

•  similarity between users u and v
–  Pearson correlation coefficient

 ∑ (radj(u,i)*radj(v, i))
 i in Iu,v
sim(u,v) =
 (∑(radj(u,i))2 * ∑(radj(v, i))2)½
 i in Iu,v i in Iu,v

7

25

Predicting User’s rating of new item:
User-based

For item i not rated by user u

 ∑ (sim(u,v)*radj(v, i))
 v in S
rpred(u,i) = ru

avg +
 ∑ |sim(u,v)|
 v in S

S can be all users who have rated i or just those users
most similar to u 26

Collaborative filtering example
user
ratings

adj.
user
ratings

book 1 book 2 book 3 book 4

user 1 5 1 2 0

user 2 x 5 2 5

user 3 3 1 x 2
user 4 4 0 2 ?

book 1 book 2 book 3 book 4

user 1 3 -1 0 -2

user 2 x 1 -2 1

user 3 1 -1 x 0

user 4 2 -2 0 ?

27

Collaborative filtering example

•  sim(u1,u4) = (6+2)/(10*8)1/2 = .894
•  sim(u2,u4) = (-2)/(5*4)1/2 = -.447
•  sim(u3,u4) = (2+2)/(2*8)1/2 = 1

•  predict r(u4, book4) = 2 +

 = 2 - .955 ≈ 1

(-2)*.894 +1*(-.447) + 0*1
.894 + .447 + 1

28

Another choice of similarity function:
Item Similarities

•  similarity between items i and j
–  vector of ratings of users in Ui,j
–  cosine measure using adjusted ratings

 ∑ (radj(u,i)*radj(u, j))
 u in Ui,j
sim(i,j) =
 (∑ (radj(u,i))2 ∑(radj(u, j))2)½
 u in Ui,j u in Ui,j

8

29

Predicting User’s rating of new item:
Item-based

For item i not rated by user u

 ∑ (sim(i,j)*r(u, j))
 j in T
ritem-pred(u,i) =
 ∑ |sim(i,j)|
 j in T

T can be all items in Iu or just items most similar to i

Ø  Prediction uses only u’s ratings, but similarity
uses other users’ ratings

30

Limitations

•  May not have enough ratings for new
users

•  New items may not be rated by enough
users

•  Need “critical mass” of users
– All similarities based on user ratings

But can take user “out of comfort zone”

Applying nearest-neighbor collab.
filtering concepts to search

•  Collaborative histories
– How determine user similarity?

•  Clicking URL = buying product?
•  Behavior on only identical searches?
•  Exact URLs or general topic interests?

– Hybrid content-based and behavior-based
•  Computational expense?

– Argues for general topic-interest characterizations

– How apply similarity?
•  Same search? or Same topic of search?
•  Bias ranking? or Bias topics of results? 31

Example
from A Large-scale Evaluation and Analysis of
Personalize Search Strategies (in WWW07)

•  Goal: rerank search results
•  Based on query log history – clicks as ratings
•  Also uses 67 pre-defined topic categories
•  Strategy:

–  get similarity of users based on user history of visited
pages

–  find K most similar users to user doing search
K nearest neighbor; use K=50

–  calc. score for each result of search based on click
history of K nearest neighbors

–  rerank results of search based on score 32

9

Details

P(u) = collection of Web pages visited by user u in the past
P(p|u) = # times u clicked on page p in past
 total # times u clicked on a page in past
w(p) = log(total # users / # users visited page p)

“impact weight” - idf-like

c(p) = “category vector” for page p
 do classification of page

vector gives confidence # for top 6 categories (other entries 0)

User profile cl(u) = Σp in P(u) P(p|u)w(p)c(p) hybrid!

 cl(u1)�cl(u2)
 ||cl(u1)|| ||cl(u2) || 33

from A Large-scale Evaluation
and Analysis of Personalize
Search Strategies (in WWW07)

User similarity sim(u1, u2) =

Details

Sk(ua) denotes k nearest neighbors of user ua

click history:
|clicks(q,p,us)| = # clicks on pg p by user us on past query q
|clicks(q,*,us)| = # clicks overall by user us on past query q

the score of a page p for query q and user u:

 Σ sim(us,u) * |clicks(q,p,us)|
 β + Σ |clicks(q,*,us)|

β is a “smoothing factor”; taken to be 0.5

34

from A Large-scale Evaluation
and Analysis of Personalize
Search Strategies (in WWW07)

us in Sk(u)

us in Sk(u)

S (q,p,u)=

Experiments

•  Data set: MSN query logs 12 days August 2006
sampled 10,000 distinct users
used 11 days for training, last day for testing
~ 4000 test queries

•  Action, for each user and query
–  re-rank top 50 results using a “fusion” of original rank

and order given by page scores S(q,p,u)
•  Evaluation: 2 metrics

1. a DCG-like metric with clicking indicating relevance
2. average rank of clicked items

 35

from A Large-scale Evaluation
and Analysis of Personalize
Search Strategies (in WWW07)

Results

•  Good news:
re-ranking improves over original ranking

•  So-so news:
improvement is 3.62% on queries where there is room

for improvement

•  Not so good news:
non-collaborative personalization improves 3.68%

|clicks(q,p,u)|
β + |clicks(q,*, u)|

36

from A Large-scale Evaluation
and Analysis of Personalize
Search Strategies (in WWW07)

S (q,p,u)=

10

Where are we?

ü Refinement/Personalization of results
•  Study techniques of

Recommender systems
ü Content filtering

• Applying content filtering to search
– Collaborative filtering

ü Nearest neighbor methods
– Applying nearest neighbor method to search

•  Matrix factorization methods
37

NEXT

