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Recommender Systems 
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Recommender Systems 
•  Look at classic model and techniques 

–  Items 
–  Users 
–  Recommend Items to Users 

•  Recommend new items based on: 
–  similarity to items user liked in past:  individual history 
“Content Filtering”   

–  Liked by other users similar to this user: collaborative 
history 
“Collaborative Filtering” 

–  Liked by other users: crowd history 
•  easier case 
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Recommender System attributes 

•  Need explicit or implicit ratings by user 
–  Purchase is 0/1 rating 

•  Movie tickets 
•  Books  

•  Have focused category 
–  examples: music, courses, restaurants 
–  hard to cross categories with content-based 
–  easier to cross categories with collaborative-based 

•  users share tastes across categories? 
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Content Filtering 
•  Items must have characteristics 
•  user values item  

⇒  values characteristics of item 
•  model each item as vector of weights of 

characteristics 
– much like vector-based IR 

•  user can give explicit preferences for 
certain characteristics 
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Buy/no buy prediction method:  
similarity with centroid 

•  Average vectors of items user bought 
– user’s centroid 

•  Find similarity of new items to user’s centroid  

•  Decide threshold for “buy” recommendation 
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Example 
•  user bought book 1 and book 2 
•  Average books bought = (0, 1, 0.5, 0) 
•  Score new books 

–  dot product gives:  score(A) = 0.5; score (B)= 1 
•  decide threshold for recommendation 

1st person romance mystery sci-fi 

book 1 0 1 1 0 

book 2 0 1 0 0 

new book A 1 .5 0 0 

new book B 0 1 0 .2 
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Method issues  

•  Centroid best way to build a preference vector? 

•  What metric use for similarity between new 
items and preference vector? 
-  Normalization? 

•  What if users give ratings? 
-  Centroid per rating value? 

•  how include explicit user preferences 

•  How determine threshold? 
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Example with explicit user preferences 
How use scores of books bought?  

Try: preference vector p where component k = 
user pref for characteristic k if ≠ 0 
avg. comp. k of books bought when user pref =0 

 0 pref for user = “don’t care” 
 

p=(0, 1, 0.5, -5)  
New scores? 

p•A = 0.5 
p•B = 0 

1st per rom mys sci-fi 

user pref 0 1 0 -5 

book 1 0 1 1 0 

book 2 0 1 0 0 

new A 1 .5 0 0 

new B 0 1 0 .2 
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Other methods: machine learning 

•  Major alternatives based on classifiers 
– Training set: items bought and not bought 
– Train classifier – many algorithms 
– Classify new item as buy/no buy 

•  Observations 
– Uses books not bought. Problems? 
– Multiple rating value 

Can use multiple classes 
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Limitations of Content Filtering 

•  Can only recommend items similar to 
those user rated highly 

•  New users 
–  Insufficient number of rated items 

•  Only consider features explicitly 
associated with items 
– Do not include attributes of user 

Applying content filtering 
methods to search 

•  Characterize documents (info. objects) 
–  topic analysis? 
– other properties, e.g.: 

•  Domain of source 
•  Date of publication/update 

•  Characterize individuals 
–  deduce from properties of objects interact with 
–  user provided preferences 
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Applying content filtering 
methods to search, cont. 

•  Query filters documents to consider 
– Convert query to topic-based? 

•  Too error prone? 

– Modify query to bias towards user’s 
preferred topics? 

•  Ranking is recommendation 
– Use similarity to user’s characterization 
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Example study: 
Personalizing Web Search Using Long-term 

Browsing History (in WSDM11) 

•  Goal: rerank  
–  top 50 results from Google query 

•  Query is initial filter to get results from Google 

•  Strategy:  
–  score snippets from search result against user profile  
–  rerank based on snippet score 
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Personalizing Web Search Using Long-term Browsing History, cont 

User Characterization 
•  Selection of info 

–  list of visited URLs w/ number visits 
–  list of past search queries and pages clicked 
–  list of terms with weights for content of pages visited 

•  Studies selection of methods  
–  what sources of terms use 

•  body, title tags, metainfo like keywords 
–  weights for terms 

•  tf-idf 
– where get idf? 

•  “modified BM25”- a “log odds measure” 14 best 

WmodBM25  weighting 

N = # documents on Web – estimated 
nti = # docs on Web containing term ti  - estimated 
R = # documents in user browser history 
rti = # docs in user browser history that contain term ti 
 
 

WmodBM25(ti) = 
  

        ( (rti + 0.5)(N – nti + 0.5) ) 
 

        ( (nti + 0.5)(R - rti + 0.5) )  
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log 

Personalizing Web Search Using Long-term Browsing History, cont  

Documents 

•  Characterization 
– words in snippet 
– original rank by Google search 

•  Scoring 
– best performing: language-based model 

•  based on content (terms) 
•  adjustments for 

– URLs previously visited 
– original rank of snippet in search 

16 
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Scoring a snippet 

Nsi= # unique words in snippet si 

rsi = rank of snippet si in original search results 
ni = # previous visits by user to web page with snippet si 
w(tk) = weigth of term tk in user profile 
wtotal = sum of all term weights in user profile 
 

scorelang. model (si) = Σk=0 log ( (w(tk) +1)/wtotal) 
 
•  modif. for URLs previously visited:   

scorew/URL(si)=  score(si)*(1+α*ni)      parameter α 
 

•  modif to acct. for orig. rank:   
scorew/orig(si) = score(si)*( 1/(1+log (rsi)) ) 
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Nsi 

Personalizing Web Search Using Long-term Browsing History   
Evaluation 

 
•  “offline” evaluation:  

–  relevance judgments by volunteers 
– used to select best of algorithmic variations 

•  online evaluation of best variations: 
– add-on to Browser by volunteers 
–  interleave original results (no 

personalization) with results reranked by 
snippet score 

–  record clicks by user – which list from 
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Personalizing Web Search Using Long-term Browsing History   
Results 

 
•  Offline: normalized DCG, avg. of 72 queries 

–  Google’s ranking w/out personalization: 0.502 
–  best-performing of variations for reranking: 0.573 

•  Online 
–  8% queries: # clicks from original and reranked same 
–  of rest: 60.5% queries: more clicks from reranked 
                39.5% queries: more clicks from original 

Observation 
•  Reranking can be done completely in browser if 

enough space for data for user profile 19 

  

What we’ve just seen: 
   Applying content filtering to search 

 

Now back to recommender systems: 
   Collaborative Filtering 
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Collaborative Filtering 
•  Recommend new items liked by other 

users similar to this user 
•  need items already rated by user and 

other users 
•  don’t need characteristics of items 

– each rating by individual user becomes 
characteristic 

•  Can combine with item characteristics 
–  hybrid content/collaborative 
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Major method types 

•  Nearest neighbor 
– Use similarity function 
– Prediction based on previously rated items 

•  Matrix Factorization 
– “Latent factors” 
– Matrix decomposition 

•  Both use (user × item) matrix 
–  vector similarity 
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Example of nearest neighbor: 
Preliminaries 

•  Notation 
–  r(u,i) = rating of ith item by user u 
–  I u = set of items rated by user u 
–  Iu,v = set of items rated by both users u and v 
– Ui,j = set of users that rated items i and j 

•  Adjust scales for user differences 
– Use average rating by user u: 
       ru

avg  = (1/|Iu| ) * ∑ r(u,i)  

 

– Adjusted ratings:   radj(u,i)  = r(u,i) - ru
avg 

i in Iu 
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One choice of similarity function:  
User Similarities 

•  similarity between users u and v 
–   Pearson correlation coefficient 
 

                     ∑ (radj(u,i)*radj(v, i) ) 
                            i in Iu,v                                           
sim(u,v) = 
                 (  ∑(radj(u,i))2 * ∑(radj(v, i))2  )½    
                            i in Iu,v                                              i in Iu,v 
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Predicting User’s rating of new item: 
User-based 

For item i not rated by user u 

                                 ∑ (sim(u,v)*radj(v, i))  
                                            v in S                                           
rpred(u,i) = ru

avg  + 
                                 ∑ |sim(u,v)| 
                                             v in S 

S can be all users who have rated i or just those users 
most similar to u 26 

Collaborative filtering example 
user  
ratings 
 
 
 
 
 
adj. 
user 
ratings 

book 1 book 2 book 3 book 4 

user 1 5 1 2 0 

user 2 x 5 2 5 

user 3 3 1 x 2 
user 4 4 0 2 ? 

book 1 book 2 book 3 book 4 

user 1 3 -1 0 -2 

user 2 x 1 -2 1 

user 3 1 -1 x 0 

user 4 2 -2 0 ? 
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Collaborative filtering example 

•  sim(u1,u4) = (6+2)/(10*8)1/2 = .894 
•  sim(u2,u4) = (-2)/(5*4)1/2 = -.447 
•  sim(u3,u4) = (2+2)/(2*8)1/2 = 1 

•  predict  r(u4, book4) = 2 + 

                                      =  2 - .955  ≈  1 
 

(-2)*.894 +1*(-.447) + 0*1 
.894 + .447 + 1 
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Another choice of similarity function:  
Item Similarities 

•  similarity between items i and j 
–  vector of ratings of users in Ui,j 
–  cosine measure using adjusted ratings 
 

                            ∑ (radj(u,i)*radj(u, j) )  
                                    u in Ui,j                                           
sim(i,j) = 
                     (  ∑ (radj(u,i))2  ∑(radj(u, j))2  )½    
                                u in Ui,j                                 u in Ui,j 
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Predicting User’s rating of new item: 
Item-based 

For item i not rated by user u 
 
                                      ∑ (sim(i,j)*r(u, j))  
                                                   j in T                                           
ritem-pred(u,i) = 
                                    ∑ |sim(i,j)| 
                                                j in T 

 
T can be all items in Iu or just items most similar to i 

Ø  Prediction uses only u’s ratings, but similarity 
uses other users’ ratings 
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Limitations 

•  May not have enough ratings for new 
users 

•  New items may not be rated by enough 
users 

•  Need “critical mass” of users 
– All similarities based on user ratings 

But can take user “out of comfort zone” 

Applying nearest-neighbor collab. 
filtering concepts to search 

•  Collaborative histories 
– How determine user similarity? 

•  Clicking URL = buying product? 
•  Behavior on only identical searches? 
•  Exact URLs or general topic interests? 

– Hybrid content-based and behavior-based 
•  Computational expense? 

– Argues for general topic-interest characterizations 

– How apply similarity? 
•  Same search? or Same topic of search? 
•   Bias ranking? or Bias topics of results? 31 

Example 
from A Large-scale Evaluation and Analysis of 
Personalize Search Strategies  (in WWW07) 

•  Goal: rerank search results  
•  Based on query log history – clicks as ratings 
•  Also uses 67 pre-defined topic categories 
•  Strategy:  

–  get similarity of users based on user history of visited 
pages 

–  find K most similar users to user doing search 
K nearest neighbor;   use K=50 

–  calc. score for each result of search based on click 
history of K nearest neighbors  

–  rerank results of search based on score 32 
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Details 

P(u) = collection of Web pages visited by user u in the past 
P(p|u) =        # times u clicked on page p in past 
                     total # times u clicked on a page in past 
w(p) = log( total # users / # users visited page p) 

“impact weight”   -  idf-like 

c(p) = “category vector” for page p     
           do classification of page 

vector gives confidence # for top 6 categories (other entries 0) 
 

User profile           cl(u) = Σp in P(u) P(p|u)w(p)c(p)   hybrid! 
 

                                                         cl(u1)�cl(u2)  
                                                     ||cl(u1)||  ||cl(u2) || 33 

from A Large-scale Evaluation 
and Analysis of Personalize 
Search Strategies  (in WWW07) 

User similarity      sim(u1, u2) = 

Details 

Sk(ua) denotes k nearest neighbors of user ua 
 

click history: 
|clicks(q,p,us)| = # clicks on pg p by user us on past query q 
|clicks(q,*,us)| = # clicks overall by user us on past query q 
 

the score of a page p for query q and user u: 
 
                        Σ            sim(us,u) * |clicks(q,p,us)| 
                                   β + Σ             |clicks(q,*,us)| 
 
β is a “smoothing factor”;   taken to be 0.5 
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from A Large-scale Evaluation 
and Analysis of Personalize 
Search Strategies  (in WWW07) 

us in Sk(u)  

us in Sk(u)  

S (q,p,u)=  

Experiments 

•  Data set:  MSN query logs 12 days August 2006 
sampled 10,000 distinct users 
used 11 days for training,  last day for testing 
~ 4000 test queries 

•  Action,   for each user and query 
–  re-rank top 50 results using a “fusion” of original rank 

and order given by page scores S(q,p,u)  
•  Evaluation: 2 metrics  

1. a DCG-like metric with clicking indicating relevance  
2. average rank of clicked items  
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from A Large-scale Evaluation 
and Analysis of Personalize 
Search Strategies  (in WWW07) 

Results 

•  Good news:  
re-ranking improves over original ranking 
 

•  So-so news: 
improvement is 3.62% on queries where there is room 

for improvement 
 

•  Not so good news: 
non-collaborative personalization improves 3.68% 
 

|clicks(q,p,u)| 
β +  |clicks(q,*, u)|  
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from A Large-scale Evaluation 
and Analysis of Personalize 
Search Strategies  (in WWW07) 

S (q,p,u)=  
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Where are we? 

ü Refinement/Personalization of results 
•  Study techniques of  

Recommender systems 
ü Content filtering 

• Applying content filtering to search 
– Collaborative filtering 

ü Nearest neighbor methods 
– Applying nearest neighbor method to search 

•   Matrix factorization methods 
37 

NEXT 


