Searching non-text information objects

Non-text digital objects

- Music
- Speech
- Images
- 3D models
- Video
- ?

Ways to query for something

1

3

- 1. Query by category/ theme
 - easiest work done ahead of time
- 2. Query by describing content
 - text-based query
 - text-based retrieval?
- 3. Query by example
 - "similar to"
 - imprecise example sketch
- query text docs and non-text objects with 2
- don't often do doc search by 3
- big move to do music, images by 3

Query by describing content

2

- text-based queries
- · where get text-based content?
 - author labels
 - metadata
 - URLs
 - text near imbedded objects
 - html pages
 - group tagging
 - folksonomy
 - Flickr

Example: content- based image search

First example method: color histogram

- k colors
- Picture as histogram **x** : % pixels each color
- k×k matrix A of color similarity weights
- · histogram defines feature vectors

• dist_{histo}(
$$\boldsymbol{x}, \boldsymbol{y}$$
) = (\boldsymbol{x} - \boldsymbol{y})^t A(\boldsymbol{x} - \boldsymbol{y})

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} (x_{i} - y_{i})(x_{j} - y_{j})$$

– cross-talk: quadratic terms needed
 • not Euclidean distance

color histograms: reducing complexity

- compute RED_{avg}, GREEN_{avg}, BLUE_{avg}
 over all pixels
- use to construct 3D-vector for picture
- use Euclidean distance
- · get close candidates
- examine close candidates with full histogram metric

color histograms: observations

- works for certain types of images – sunset canonical example
- color histogram global property
- this only small part of work: QBIC system, IBM, 1995

Second example method: a region-based representation

9

11

- · region-based features of images
- query processed in same way as collection
- space-conscious: use bit vectors
- · levels of representation:
 - store bit vector for each region
 - store bit vector for each image
- get close candidates: compare image bit vectors
- · compare top k candidates using region bit vectors

Processing images of collection & query

- segment into homogeneous regions
 14 dimensional feature vectors
- threshold and transform
 - high-dimensional bit vectors store
 - Hamming distance between regions (XOR)
- build image feature vector
 - n region bit-vectors + weights \Rightarrow
 - 1 m-dimensional real-valued image feature vector
 - L₁ distance between feature vectors
- · transform image vector
 - one high-dimensional bit vector for image store 12

Interesting details

- · Choices of distance:
 - prove that preserve distance relationships when go from real-valued vectors to bit vectors
- · Nature of sampling:
 - Example: region bit vectors -> 1 m-dim real image vector To get the value for one component of real vector
 - 1. choose **h** positions of region bit vectors (mask)
 - 2. choose an h-dim. bit vector as pattern
 - For each region bit vector If bit values at h positions of region vector equal pattern add weight of region to component of image vector
 - h (just 1) and m are parameters to choose

15

Observations: region based

- Example of one regional method – lots of research, lots of places!
- This method uses sampling heavily

 produce bit vectors
- Part of larger project multiple media - CASS, Princeton, 2004

Third example method: Combining simple ideas

- · Goals
 - reduce search space
 - reduce disk I/O cost
- Simple ideas
 - K-means clustering of image database
 - B+ trees
 - heuristic search limits
- · New ideas
 - search beyond cluster containing query image

17

- limit search within each cluster

Image representation

- Inpute: non-texture RGB images
- Process
 - resize to uniform 128x128 pixels
 - transform to different color space
 - relate to human perception
 - transform to 964 dimensional feature vector

18

20

- · Apply Daubechies wavelet tranformation
- use several applications

Data space representation

- Cluster data space using K-means
 - search for "most cost effective" K
 - · search space size vs result accuracy
 - use cluster validity indexes
 - use majority vote of different indexes
- · Find cluster centroids
- For each cluster build a B+ tree
 - B+ tree contains each image in cluster
 - search key for ith image in cluster is distance of feature vector of ith image to cluster center

Search space for query

- don't search things know probably too far
- don't limit search to just cluster containing query
- · Chose similarity threshhold c for data set
- search images in outer shell of cluster
 range d-c to d+c for d=distance query to its centroid
 B+ tree good for range queries
- Same principle whether q in boundry of a cluster or not
 - but use different c : c_{same}, c_{diff}

Fourth example method: **Observations** Image ranking dynamic capability of B+ trees given similarity measures · color based use PageRank style define no region analysis of images $v = \alpha(1/n) + (1-\alpha)Sv$ · image representation and data space where representation independent n is the number of images to be ranked S is a matrix of image-image similarities _ column normalized, symmetric citation: "Integrating wavelets with clustering and indexing v is the vector of VisualRanks for effective content-based image retrieval" 2012 α is the usual parameter 23

Testing:Google image search

See

VisualRank: Applying PageRank to Large-Scale Image Search, Yushi Jing and Shumeet Baluja, *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(11), p 1877 - 1890, IEEE, 2008.

- -Table 1
- -Figure 11

25

27

Observations: Image rank

- intention to use on images returned by other means
 - e.g. text based
- graph undirected
- Deployed?

Image search: Summary of techniques

- Techniques seen
 - aggregate/average features
 - sample
 - course screening followed by more accurate
- · Goals
 - reduce dimension
 - reduce complexity of distance metric
 - reduce space

Image search: Commercial search engines 26

- Use everything you can afford to use
- Text still king!?

