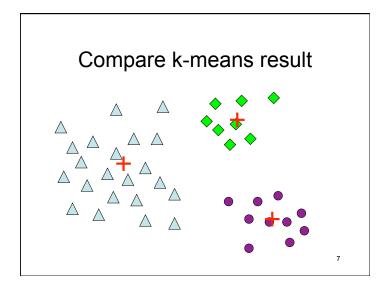
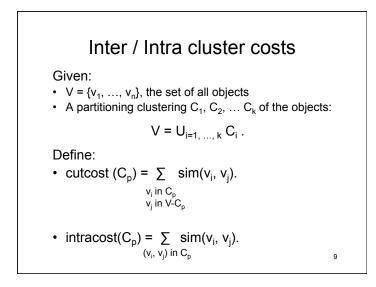
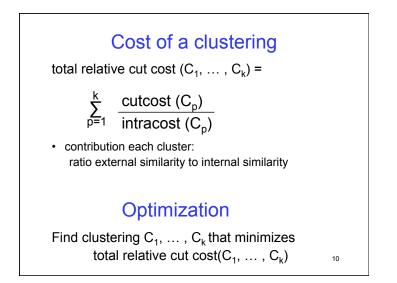
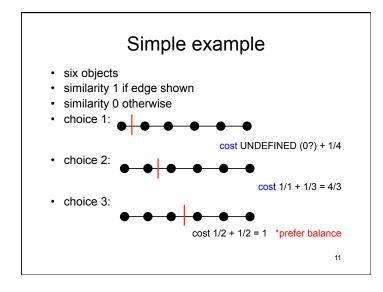


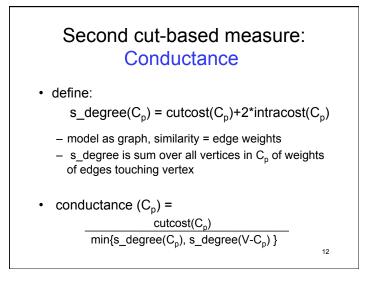
- 1. Put all objects in one cluster
- 2. Repeat until all clusters are singletons
 - a) choose a cluster to split
 - what criterion?
 - b) replace the chosen cluster with the sub-clusters
 - split into how many?
 - how split?
 - "reversing" agglomerative => split in two
- cutting operation: cut-based measures seem to be a natural choice.
 - focus on similarity across cut lost similarity
- not necessary to use a cut-based measure

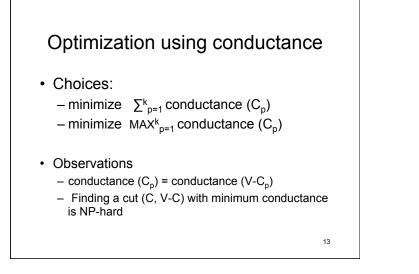


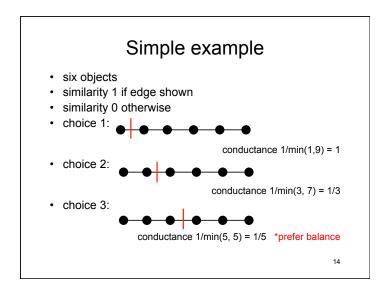


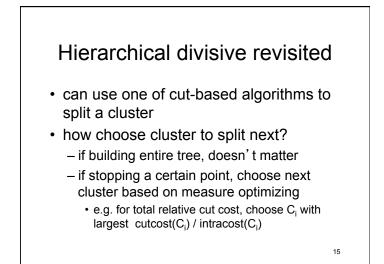


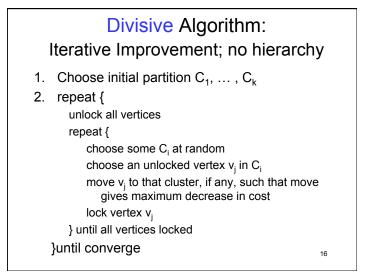



- focus on weak connections between objects in different clusters rather than strong connections between objects within a cluster
- Are many cut-based measures
- We will look at two


8

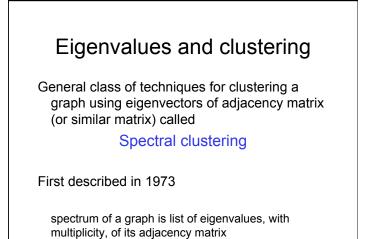






Observations on algorithm

- heuristic
- · uses randomness
- convergence usually improvement < some chosen threshold between outer loop iterations
- vertex "locking" insures that all vertices are examined before examining any vertex twice
- · there are many variations of algorithm
- can use at each division of hierarchical divisive algorithm with k=2
 - more computation than an agglomerative merge

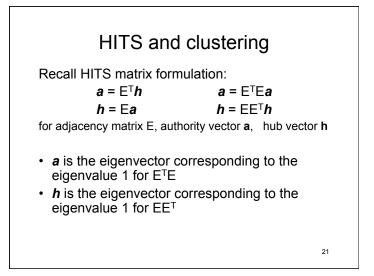

17

19

Compare to k-means

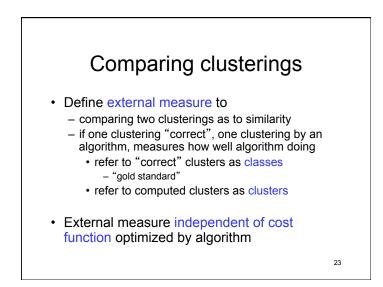
- · Similarities:
 - number of clusters, k, is chosen in advance
 - an initial clustering is chosen (possibly at random)
 - iterative improvement is used to improve clustering
- · Important difference:
 - divisive algorithm can minimize a cut-based cost
 - total relative cut cost, conductance use external and internal measures
 - k-means maximizes only similarity within a cluster
 - ignores cost of cuts

18


Given: k: number of clusters nxn object-object sim. matrix S of non-neg. val.s Compute:

Spectral clustering: brief overview

- 1. Derive matrix L from S (straightforward computation)
 - variety of definitions of L
 - e.g. Laplacian L=I-E if similarity is edge/no edge
- 2. find eigenvectors corresp. to k smallest eigenval.s of L
- 3. use eigenvectors to define clusters
 - variety of ways to do this
 - all involve another, simpler, clustering
 - · e.g. points on a line


Spectral clustering optimizes a cut measure similar to total relative cut cost

5

HITS and clustering

- Non-principal eigenvectors of EE^T and E^TE have positive and negative component values – Denote a_{e2}, a_{e3}, \dots matching h_{e2}, h_{e3}, \dots
- For a matched pair of eigenvectors a_{ej} and h_{ej}
 Denote kth component of jth pair: a_{ei}(k) and h_{ei}(k)
 - Make a "community" of size c (chosen constant):
 - Choose c pages with most positive $h_{ei}(k)$ hubs
 - Choose c pages with most positive **a**_{ei}(k) authorities
 - Make another "community" of size c:
 - Choose c pages with most negative h_{ei}(k) hubs
 - Choose c pages with most negative a_{ej}(k) authorities

One measure: motivated by F-score in IR

- · Given:
 - a set of classes $S_1, \ldots S_k$ of the objects use to define relevance
 - a computed clustering C₁, ... C_k of the objects use to define retrieval
- · Consider pairs of objects
 - pair in same class, call *similar pair* ≡ relevant
 - pair in different classes ≡ irrelevant
 - pair in same clusters ≡ retrieved
- pair in different clusters ≡ not retrieved
- Use to define precision and recall

24

Clustering f-score

precision of the clustering w.r.t the gold standard =
similar pairs in the same cluster
pairs in the same cluster

recall of the clustering w.r.t the gold standard = # similar pairs in the same cluster # similar pairs

f-score of the clustering w.r.t the gold standard =
2*precision*recall
precision + recall

25

Properties of cluster F-score

- always ≤ 1
- Perfect match computed clusters to classes gives F-score = 1
- Symmetric
 - Two clusterings {C_i} and {K_i}, neither "gold standard"
 - treat {C_i} as if are classes and compute F-score of {K_j} w.r.t. {C_i} = F-score_{{Cij}({K_j})
 - treat {K_j} as if are classes and compute F-score of $\{C_i\}$ w.r.t. {K_j} = F-score_{Kj}({C_i})

26

28

 $\succ \text{F-score}_{\text{Ci}}(\{K_{j}\}) = \text{F-score}_{\{K_{j}\}}(\{C_{j}\})$

another related external measure Rand index

(# similar pairs in the same cluster + # dissimilar pairs in the different clusters)

N (N-1)/2

percentage pairs that are correct

27

Clustering: wrap-up

- many applications
 - application determines similarity between objects
- menu of
 - cost functions to optimizes
 - similarity measures between clusters
 - types of algorithms
 - flat/hierarchical
 - constructive/iterative
 - algorithms within a type