Hierarchical Divisive: Template

1. Put all objects in one cluster

2. Repeat until all clusters are singletons
a) choose a cluster to split
what criterion?
b) replace the chosen cluster with the sub-clusters
split into how many?
how split?
“reversing” agglomerative => split in two
*  cutting operation: cut-based measures
seem to be a natural choice.
—  focus on similarity across cut - lost similarity

. not necessary to use a cut-based measure
.

An Example
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An Example: 18t cut

An Example: result of 15t cut




An Example: 2" cut

An Example: stop at 3 clusters

Compare k-means result
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Cut-based optimization

» focus on weak connections between
objects in different clusters rather than
strong connections between objects
within a cluster

* Are many cut-based measures
* We will look at two




Inter / Intra cluster costs

Given:
* V={v,, ..., v}, the set of all objects
A partitioning clustering C,, C,, ... C, of the objects:
V=U. «C.
Define:
* cutcost (C,) = 3 sim(v, v)).
v;in C,
v;in V-C,

* intracost(C,) = ¥ sim(v;, v)).
(Vi vj) in C, 9

Cost of a clustering

total relative cut cost (C,, ..., C,) =

% cutcost (C,)
p=1intracost (C,)

+ contribution each cluster:
ratio external similarity to internal similarity

Optimization

Find clustering C,, ..., C, that minimizes
total relative cut cost(C,, ..., C,) 10

Simple example

* six objects
+ similarity 1 if edge shown
+ similarity O otherwise

-choice1:. oo o o o

cost UNDEFINED (07?) + 1/4

» choice 2:

cost 1/1 +1/3 = 4/3

oo olo oo

cost 1/2 +1/2 =1 “*prefer balance

» choice 3:

1

Second cut-based measure:
Conductance

* define:
s_degree(C,) = cutcost(C,)+2*intracost(C,)

— model as graph, similarity = edge weights
— s_degree is sum over all vertices in C,, of weights
of edges touching vertex

* conductance (C;) =
cutcost(C,)
min{s_degree(C,), s_degree(V-C,) }




Optimization using conductance

 Choices:
— minimize 3, conductance (C,)
— minimize MAX _; conductance (C,)

» Observations
— conductance (C,) = conductance (V-C,)

— Finding a cut (C, V-C) with minimum conductance
is NP-hard

Simple example

* six objects
+ similarity 1 if edge shown
+ similarity O otherwise

-choice1:. oo o o o

conductance 1/min(1,9) = 1

" choice 2: oo 0o o oo

conductance 1/min(3, 7) = 1/3
+ choice 3:

oo olo oo

conductance 1/min(5, 5) = 1/5 *prefer balance
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Hierarchical divisive revisited

 can use one of cut-based algorithms to
split a cluster

* how choose cluster to split next?
— if building entire tree, doesn’ t matter

— if stopping a certain point, choose next
cluster based on measure optimizing

* e.g. for total relative cut cost, choose C; with
largest cutcost(C,) / intracost(C;)

Divisive Algorithm:
Iterative Improvement; no hierarchy

1. Choose initial partition C,, ..., C,
2. repeat {
unlock all vertices
repeat {
choose some C, at random
choose an unlocked vertex v; in C;

move v, to that cluster, if any, such that move
gives maximum decrease in cost

lock vertex v,
} until all vertices locked

tuntil converge




Observations on algorithm

¢ heuristic
¢ uses randomness

» convergence usually improvement < some
chosen threshold between outer loop
iterations

« vertex “locking” insures that all vertices are
examined before examining any vertex twice

» there are many variations of algorithm

» can use at each division of hierarchical
divisive algorithm with k=2
— more computation than an agglomerative merge
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Compare to k-means

 Similarities:
— number of clusters, k, is chosen in advance
— an initial clustering is chosen (possibly at random)

— iterative improvement is used to improve
clustering

* Important difference:
— divisive algorithm can minimize a cut-based cost

« total relative cut cost, conductance use external
and internal measures

— k-means maximizes only similarity within a cluster

* ignores cost of cuts
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Eigenvalues and clustering

General class of techniques for clustering a
graph using eigenvectors of adjacency matrix
(or similar matrix) called

Spectral clustering

First described in 1973

spectrum of a graph is list of eigenvalues, with
multiplicity, of its adjacency matrix

Spectral clustering: brief overview

Given: k: number of clusters
nxn object-object sim. matrix S of non-neg. val.s
Compute:
1. Derive matrix L from S (straightforward computation)
— variety of definitions of L
* e.g. Laplacian L=I-E if similarity is edge/no edge
2. find eigenvectors corresp. to k smallest eigenval.s of L
3. use eigenvectors to define clusters
— variety of ways to do this
— all involve another, simpler, clustering
* e.g.points on aline

Spectral clustering optimizes a cut measure
similar to total relative cut cost




HITS and clustering

Recall HITS matrix formulation:
a=E"h a=E"Ea
h=Ea h=EE"h
for adjacency matrix E, authority vector a, hub vector h

* ais the eigenvector corresponding to the
eigenvalue 1 for ETE

* his the eigenvector corresponding to the
eigenvalue 1 for EET
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HITS and clustering

+ Non-principal eigenvectors of EET and ETE
have positive and negative component values
— Denote  ay, a3, .-
matching hgy, hgs, ...

+ For a matched pair of eigenvectors a,; and h,

— Denote k" component of j'" pair: a,(k) and hg(k)
— Make a “community” of size ¢ (chosen constant):

+ Choose c pages with most positive h(k) - hubs

+ Choose ¢ pages with most positive a(k) - authorities
— Make another “community” of size c:

+ Choose c pages with most negative h(k) - hubs

+ Choose c pages with most negative a,(k) - authoritigs

Comparing clusterings

» Define external measure to
— comparing two clusterings as to similarity
— if one clustering “correct”, one clustering by an
algorithm, measures how well algorithm doing
- refer to “correct” clusters as classes
— “gold standard”
« refer to computed clusters as clusters

» External measure independent of cost
function optimized by algorithm
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One measure: motivated by F-score in IR

* Given:
— asetof classes Sy, ... S, of the objects
use to define relevance
— a computed clustering C, ... C, of the objects
use to define retrieval

+ Consider pairs of objects
— pair in same class, call similar pair = relevant
— pair in different classes = irrelevant
— pair in same clusters = retrieved
— pair in different clusters = not retrieved

» Use to define precision and recall 2




Clustering f-score

precision of the clustering w.r.t the gold standard =
# similar pairs in the same cluster
# pairs in the same cluster

recall of the clustering w.r.t the gold standard =
# similar pairs in the same cluster
# similar pairs

f-score of the clustering w.r.t the gold standard =
2*precision*recall
precision + recall

25

Properties of cluster F-score

* always < 1
» Perfect match computed clusters to
classes gives F-score = 1
* Symmetric
— Two clusterings {C}} and {K}, neither “gold standard”
— treat {C} as if are classes and compute F-score of
{K} w.rt. {C} = F-score;c;,({K})
— treat {K} as if are classes and compute F-score of
{C} w.r.t. {K} = F-scorey;({C})
> F-score;({K}) = F-score,;({C})
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another related external measure
Rand index

( # similar pairs in the same cluster +
# dissimilar pairs in the different clusters )

N (N-1)/2
percentage pairs that are correct
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Clustering: wrap-up

* many applications
— application determines similarity between
objects
* menu of
— cost functions to optimizes
— similarity measures between clusters
— types of algorithms
« flat/hierarchical
« constructive/iterative
— algorithms within a type
28




