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Hierarchical Divisive: Template 
1.  Put all objects in one cluster 
2.   Repeat until all clusters are singletons 

a)  choose a cluster to split 
•  what criterion? 

b)  replace the chosen cluster with the sub-clusters  
•  split into how many? 
•  how split? 
•  “reversing” agglomerative => split in two 

•  cutting operation: cut-based measures 
seem to be a natural choice.   

–  focus on similarity across cut - lost similarity 
•   not necessary to use a cut-based measure 
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An Example 
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An Example: 1st cut 
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An Example: result of 1st cut 
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An Example: 2nd cut 
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An Example: stop at 3 clusters 
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Compare k-means result 
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Cut-based optimization 

•  focus on weak connections between 
objects in different clusters rather than 
strong connections between objects 
within a cluster 

•  Are many cut-based measures 
•  We will look at two 
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Inter / Intra cluster costs 
Given: 
•  V = {v1, …, vn}, the set of all objects 
•  A partitioning clustering C1, C2, … Ck of the objects: 

V = Ui=1, …, k Ci .    
 

Define: 
•  cutcost (Cp) =  ∑     sim(vi, vj). 

•  intracost(Cp) =  ∑    sim(vi, vj). 

vi in Cp 
vj in V-Cp 

(vi, vj) in Cp 10 

Cost of a clustering 
total relative cut cost (C1, … , Ck) =  
  
          ∑  

 

 
•  contribution each cluster:  

ratio external similarity to internal similarity  

Optimization  
   

Find clustering C1, … , Ck that minimizes  
           total relative cut cost(C1, … , Ck) 

p=1 

k cutcost (Cp) 
intracost (Cp) 
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Simple example 
•  six objects  
•  similarity 1 if edge shown 
•  similarity 0 otherwise 
•  choice 1: 

cost UNDEFINED (0?) + 1/4 
•  choice 2: 

cost 1/1 + 1/3 = 4/3 
•  choice 3: 

cost 1/2 + 1/2 = 1   *prefer balance 

Second cut-based measure: 
Conductance  

•  define: 
s_degree(Cp) = cutcost(Cp)+2*intracost(Cp) 

 

–  model as graph, similarity = edge weights 
–   s_degree is sum over all vertices in Cp of weights 

of edges touching vertex 

•   conductance (Cp) =  
cutcost(Cp)  

min{s_degree(Cp), s_degree(V-Cp) } 
12 
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Optimization using conductance 

•  Choices: 
– minimize   ∑k

p=1 conductance (Cp) 
– minimize  MAXk

p=1 conductance (Cp) 
 

•  Observations 
–  conductance (Cp) = conductance (V-Cp)  
–   Finding a cut (C, V-C) with minimum conductance 

is NP-hard 
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Simple example 
•  six objects  
•  similarity 1 if edge shown 
•  similarity 0 otherwise 
•  choice 1: 

conductance 1/min(1,9) = 1 
•  choice 2: 

conductance 1/min(3, 7) = 1/3 
•  choice 3: 

conductance 1/min(5, 5) = 1/5   *prefer balance 
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Hierarchical divisive revisited 

•  can use one of cut-based algorithms to 
split a cluster 

•  how choose cluster to split next? 
–  if building entire tree, doesn’t matter 
–  if stopping a certain point, choose next 

cluster based on measure optimizing 
•  e.g. for total relative cut cost, choose Ci with 

largest  cutcost(Ci) / intracost(Ci) 
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Divisive Algorithm:  
Iterative Improvement; no hierarchy  

1.  Choose initial partition C1, … , Ck 
2.  repeat { 

unlock all vertices 
repeat { 

choose some Ci at random 
choose an unlocked vertex vj in Ci 
move vj to that cluster, if any, such that move 

gives maximum decrease in cost 
lock vertex vj 

} until all vertices locked 
}until converge 
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Observations on algorithm 
•  heuristic 
•  uses randomness 
•  convergence usually improvement < some 

chosen threshold between outer loop 
iterations 

•  vertex “locking” insures that all vertices are 
examined before examining any vertex twice   

•  there  are many variations of algorithm 
•  can use at each division of hierarchical 

divisive algorithm with k=2 
–  more computation than an agglomerative merge 
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Compare to k-means 
•  Similarities: 

–  number of clusters, k, is chosen in advance 
–  an initial clustering is chosen (possibly at random) 
–  iterative improvement is used to improve 

clustering 

•  Important difference:  
–  divisive algorithm can minimize a cut-based cost 

•  total relative cut cost, conductance use external 
and internal measures 

–  k-means maximizes only similarity within a cluster 
•  ignores cost of cuts 
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Eigenvalues and clustering 

General class of techniques for clustering a 
graph using eigenvectors of adjacency matrix 
(or similar matrix) called 

Spectral clustering 
 

First described in 1973 
 
   spectrum of a graph is list of eigenvalues, with 

multiplicity, of its adjacency matrix 
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Spectral clustering: brief overview 
Given:    k: number of clusters 
                nxn object-object sim. matrix S of non-neg. val.s 
Compute: 
1.  Derive matrix L from S  (straightforward computation) 

–  variety of definitions of L 
•  e.g. Laplacian L=I-E if similarity is edge/no edge 

2.  find eigenvectors corresp. to k smallest eigenval.s of L 
3.  use eigenvectors to define clusters 

–  variety of ways to do this 
–  all involve another, simpler, clustering 

•  e.g. points on a line 

Spectral clustering optimizes a cut measure  
similar to total relative cut cost 
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HITS and clustering 
Recall HITS matrix formulation: 

a = ETh                    a = ETEa  
h = Ea                     h = EETh 

for adjacency matrix E, authority vector a,   hub vector h 
 
•  a is the eigenvector corresponding to the 

eigenvalue 1 for ETE 
•  h is the eigenvector corresponding to the 

eigenvalue 1 for EET 
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HITS and clustering 
•  Non-principal eigenvectors of EET and ETE 

have positive and negative component values 
–  Denote     ae2, ae3, … 
    matching  he2, he3, … 

•  For a matched pair of eigenvectors aej and hej 
–  Denote kth component of jth pair: aej(k)  and hej(k)  
–  Make a “community” of size c (chosen constant): 

•  Choose c pages with most positive hej(k) - hubs 
•  Choose c pages with most positive aej(k) - authorities 

–  Make another “community” of size c: 
•  Choose c pages with most negative hej(k) - hubs 
•  Choose c pages with most negative aej(k) - authorities 
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Comparing clusterings 

•  Define external measure to 
–  comparing two clusterings as to similarity 
–  if one clustering “correct”, one clustering by an 

algorithm, measures how well algorithm doing 
•  refer to “correct” clusters as classes 

–  “gold standard” 
•  refer to computed clusters as clusters 

•  External measure independent of cost 
function optimized by algorithm 
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One measure: motivated by F-score in IR  
•  Given: 

–  a set of classes S1, … Sk of the objects  
use to define relevance 

–  a computed clustering C1, … Ck of the objects   
use to define retrieval 
 

•  Consider pairs of objects 
–  pair in same class, call similar pair ≡ relevant 
–  pair in different classes ≡  irrelevant 
–  pair in same clusters ≡  retrieved 
–  pair in different clusters ≡ not retrieved 

•  Use to define precision and recall 
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Clustering f-score  
precision of the clustering w.r.t the gold standard = 

# similar pairs in the same cluster 
# pairs in the same cluster 
 

recall of the clustering w.r.t the gold standard =  
# similar pairs in the same cluster 

# similar pairs 
 

f-score of the clustering w.r.t the gold standard =  
2*precision*recall 
precision + recall 
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•  always ≤  1 
•  Perfect match computed clusters to 

classes gives F-score = 1 
•  Symmetric    

–  Two clusterings {Ci} and {Kj}, neither “gold standard” 
–  treat {Ci} as if are classes and compute F-score of 

{Kj} w.r.t. {Ci} = F-score{Ci}({Kj}) 
–  treat {Kj} as if are classes and compute F-score of 

{Ci} w.r.t. {Kj} = F-score{Kj}({Ci})  
Ø  F-score{Ci}({Kj}) = F-score{Kj}({Ci})  

Properties of cluster F-score 

another related external measure  
Rand index  

 ( # similar pairs in the same cluster + 
# dissimilar pairs in the different clusters ) 

 
  

N (N-1)/2 
 
percentage pairs that are correct 
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Clustering:  wrap-up 
•  many applications 

– application determines similarity between 
objects 

•  menu of 
– cost functions to optimizes 
– similarity measures between clusters 
–  types of algorithms 

•  flat/hierarchical 
•  constructive/iterative 

– algorithms within a type 


