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Image Processing Operations I
•  Luminance

§  Brightness
§  Contrast.
§  Gamma
§  Histogram equalization

•  Color
§  Black & white
§  Saturation
§  White balance

•  Linear filtering 
§  Blur & sharpen
§  Edge detect
§  Convolution

•  Non-linear filtering
§  Median
§  Bilateral filter

•  Dithering
§  Quantization
§  Ordered dither
§  Floyd-Steinberg



Image Processing Operations II
•  Transformation

§  Scale
§  Rotate
§  Warp

•  Combining images
§  Composite
§  Morph
§  Comp photo

} Today

} Thursday



Image Transformation
•  Move pixels of an image

Source image Destination image 

Warp
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•  Issues:

1) Specifying where every pixel goes (mapping)
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Mapping
•  Define transformation
!  Describe the destination (x,y) for every source (u,v)
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Parametric Mappings
•  Scale by factor:
!  x = factor * u
!  y = factor * v

Scale
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Parametric Mappings
•  Rotate by Θ degrees:
!  x = ucosΘ - vsinΘ 
!  y = usinΘ + vcosΘ 
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Parametric Mappings
•  Shear in X by factor:
!  x = u + factor * v
!  y = v

•  Shear in Y by factor:
!  x = u
!  y = v + factor * u

Shear X
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Shear Y
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Non-obvious fact: 
You can make rotate 
out of three shears. 



Other Parametric Mappings
•  Any function of u and v:
!  x = fx(u,v)
!  y = fy(u,v)

Fish-eye 

“Swirl” 

“Rain” 



COS426 Examples

Wei Xiang Aditya Bhaskara  



More COS426 Examples

Michael Oranato 

Sid Kapur 

Eirik Bakke 



Point Correspondence Mappings
•  Mappings implied by correspondences:
!  A ↔ A’
!  B ↔ B’
!  C ↔ C’

A 
A’ 

B B’ 

C’ C 

Warp 



Line Correspondence Mappings
•  Beier & Neeley use pairs of lines to specify warps

Discussed in next lecture…. 



Image Transformation
•  Issues:

1) Specifying where every pixel goes (mapping)
2) Computing colors at destination pixels (resampling)

Source image Destination image

Warp



Resampling

Resampling

Simple example: scaling resolution = resampling



Resampling
Example: scaling resolution = resampling

Original 

Scaled 



Original 

Scaled 

Resampling
•  Naïve resampling can cause visual artifacts



What is the Problem?
Aliasing

Figure 14.17 FvDFH 



Aliasing
Artifacts due to under-sampling

Figure 14.17 FvDFH 



Spatial Aliasing
Artifacts due to under-sampling in x,y



Spatial Aliasing
Artifacts due to under-sampling in x,y

“Jaggies” 



Temporal Aliasing
Artifacts due to under-sampling in time
!  Strobing
!  Flickering
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Aliasing
When we under-sample an image,  
we can create visual artifacts where  
high frequencies masquerade as low ones



Sampling Theory
How many samples are enough to avoid aliasing?
!  How many samples are required to represent 

a given signal without loss of information?
!  What signals can be reconstructed without loss 

for a given sampling rate?
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Spectral Analysis
•  Spatial domain:
!  Function: f(x)
!  Filtering: convolution

•  Frequency domain:
o  Function: F(u)
o  Filtering: multiplication

Any signal can be written as a 
sum of periodic functions.



Fourier Transform

Figure 2.6 Wolberg 



Fourier Transform
•  Fourier transform:

•  Inverse Fourier transform:



Sampling Theorem

•  A signal can be reconstructed from its samples,  
iff the original signal has no content 
≥1/2 the sampling frequency - Shannon

•  The minimum sampling rate for a “bandlimited” 
function is called the “Nyquist rate”

A signal is bandlimited if its
highest frequency is bounded.

The frequency is called the bandwidth.



Sampling Theorem
•  A signal can be reconstructed from its samples,  

iff the original signal has no content 
≥1/2 the sampling frequency - Shannon

Figure 14.17 FvDFH Under-sampling

Aliasing will occur if the signal is under-sampled



Sampling and Reconstruction

Figure 19.9 FvDFH 



Sampling and Reconstruction

Sampling

Continuous function 

Discrete samples 



Sampling and Reconstruction

Sampling

Reconstruction

Continuous function 

Discrete samples 

Continuous function 



Image Processing
OK … but how does that affect image processing?

Source image Destination image 

Warp



Image Processing
Image processing often requires resampling

Ø Must band-limit before resampling to avoid aliasing

Original image 1/4  resolution 



Ideal Image Processing

Sample

Real world 

Reconstruct

Discrete samples (pixels) 

Transform

Reconstructed function 

Filter

Transformed function 
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Bandlimited function 

Reconstruct

Discrete samples (pixels) 

Display 
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Ideal Bandlimiting Filter
•  Frequency domain

•  Spatial domain

Figure 4.5 Wolberg 

0    fmax



Practical Image Processing
•  Finite low-pass filters
!  Point sampling (bad)
!  Box filter
!  Triangle filter
!  Gaussian filter
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Practical Image Processing
•  Reverse mapping:

Warp(src, dst) { 
  for (int ix = 0; ix < xmax; ix++) { 
    for (int iy = 0; iy < ymax; iy++) { 
      float w ≈ 1 / scale(ix, iy); 
      float u = fx-1(ix,iy); 
      float v = fy-1(ix,iy); 
      dst(ix,iy) = Resample(src,u,v,k,w); 
    } 
  } 
} 

Source image Destination image 

(u,v)
(ix,iy)

f



Resampling
•  Compute value of 2D function at arbitrary location 

from given set of samples

Source image Destination image 

f(u,v)
(ix,iy)



Point Sampling
•  Possible (poor) resampling implementation:

Source image Destination image 

f(u,v)
(ix,iy)

float Resample(src, u, v, k, w) { 
  int iu = round(u); 
  int iv = round(v); 
  return src(iu,iv); 
} 
 

(iu,iv)



Point Sampling
•  Use nearest sample

Input Output



Point Sampling

Point Sampled: Aliasing! Correctly Bandlimited 



Resampling with Low-Pass Filter
•  Output is weighted average of input samples, 

where weights are normalized values of filter (k)

(u,v)

k(ix,iy) represented by gray value 

w 

(ix,iy)

d 



Resampling with Low-Pass Filter
•  Possible implementation:

float Resample(src, u, v, k, w)  
{ 
  float dst = 0;  
  float ksum = 0; 
  int ulo = u - w; etc. 
  for (int iu = ulo; iu < uhi; iu++) { 
    for (int iv = vlo; iv < vhi; iv++) { 
      dst += k(u,v,iu,iv,w) * src(u,v) 
      ksum += k(u,v,iu,iv,w); 
    } 
  } 
  return dst / ksum; 
} 
 

Source image Destination image 

f(u,v)
(ix,iy)



Resampling with Gaussian Filter
•  Kernel is Gaussian function

(u,v)
Gaussian Function 

w -w 

d 

w≈3σ 

)2/( 22

),( σσ dedG −=

•  Drops off quickly, but 
never gets to exactly 0 
•  In practice: compute 

out to w ~ 2.5σ or 3σ 



Resampling with Triangle Filter
•  For isotropic Triangle filter,  

k(ix,iy) is function of d and w

(u,v)

Filter Width = 2 

Triangle filter 

d 

w w -w d 

k(i,j)=max(1 - d/w, 0) 

(ix,iy)



Sampling Method Comparison

Point Triangle Gaussian

•  Trade-offs
!  Aliasing versus blurring
!  Computation speed



Resampling Details
•  Filter width chosen based  

on scale factor of map

Filter must be 
wide enough 

to avoid aliasing  

w (u,v)



Resampling Details
What if width (w) is smaller than sample spacing

For example, when scaling an image larger.

Filter Width < 1 

w (u,v)

Triangle filter 
w -w 



Resampling Details
•  Alternative 1: Bilinear interpolation of closest pixels
!  a = linear interpolation of src(u1,v2) and src(u2,v2) 
!  b = linear interpolation of src(u1,v1) and src(u2,v1)
!  dst(x,y) = linear interpolation of “a” and “b”

(u1,v1)

(u2,v2)

(u2,v1)

(u1,v2)

(u,v)

a 

b 
Filter Width < 1 



Resampling Details
•  Alternative 2: force width to be at least 1

Filter Width < 1 

w = 1 



Alternative Algorithm
•  Forward mapping:

Warp(src, dst) { 
  for (int iu = 0; iu < umax; iu++) { 
    for (int iv = 0; iv < vmax; iv++) { 
      float x = fx(iu,iv); 
      float y = fy(iu,iv); 
      float w ≈ 1 / scale(x, y); 
      Splat(src(iu,iv),x,y,k,w);   
    } 
  } 
} 
 f

(iu,iv)
(x,y)

Source image Destination image 
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Alternative Algorithm
•  Forward mapping:

Destination image 

(x,y)

for (int iu = 0; iu < umax; iu++) { 
  for (int iv = 0; iv < vmax; iv++) { 
    float x = fx(iu,iv); 
    float y = fy(iu,iv); 
    float w ≈ 1 / scale(x, y); 
    for (int ix = xlo; ix <= xhi; ix++) { 
      for (int iy = ylo; iy <= yhi; iy++) { 
        dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv); 
      } 
    } 
  } 
} 
 Problem? 



Alternative Algorithm
•  Forward mapping:

for (int iu = 0; iu < umax; iu++) { 
  for (int iv = 0; iv < vmax; iv++) { 
    float x = fx(iu,iv); 
    float y = fy(iu,iv); 
    float w ≈ 1 / scale(x, y);  
    for (int ix = xlo; ix <= xhi; ix++) { 
      for (int iy = ylo; iy <= yhi; iy++) { 
        dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv); 
        ksum(ix,iy) += k(x,y,ix,iy,w); 
      } 
    } 
  } 
} 
for (ix = 0; ix < xmax; ix++) 
  for (iy = 0; iy < ymax; iy++) 
    dst(ix,iy) /= ksum(ix,iy) 
 

Destination image 

(x,y)



Forward vs. Reverse Mapping?
•  Forward mapping

•  Reverse mapping

Source image Destination image 

(u,v)
(ix,iy)

f

f
(iu,iv)

(x,y)

Source image Destination image 



Forward vs. Reverse Mapping
•  Tradeoffs:
!  Forward mapping:

-  Requires separate buffer to store weights 

!  Reverse mapping:
-  Requires inverse of mapping function, 

random access to original image

Reverse mapping is usually preferable 



Putting it All Together
•  Possible implementation of image blur:

Increasing sigma 

Blur(src, dst, sigma) { 
  w ≈ 3*sigma; 
  for (int ix = 0; ix < xmax; ix++) { 
    for (int iy = 0; iy < ymax; iy++) { 
      float u = ix; 
      float v = iy; 
      dst(ix,iy) = Resample(src,u,v,k,w); 
    } 
  } 
} 



Putting it All Together
•  Possible implementation of image scale:

Scale(src, dst, sx, sy) { 
  w ≈ max(1/sx,1/sy); 
  for (int ix = 0; ix < xmax; ix++) { 
    for (int iy = 0; iy < ymax; iy++) { 
      float u = ix / sx; 
      float v = iy / sy; 
      dst(ix,iy) = Resample(src,u,v,k,w); 
    } 
  } 
} 

Source image Destination image 

(u,v) f (ix,iy)



Putting it All Together
•  Possible implementation of image rotation:

Rotate(src, dst, Θ) { 
  w ≈ 1 
  for (int ix = 0; ix < xmax; ix++) { 
    for (int iy = 0; iy < ymax; iy++) { 
      float u = ix*cos(-Θ) – iy*sin(-Θ); 
      float v = ix*sin(-Θ) + iy*cos(-Θ); 
      dst(ix,iy) = Resample(src,u,v,k,w); 
    } 
  } 
} 

Rotate
Θ

v

u

y

x



Summary
•  Mapping
!  Parametric
!  Correspondences 

•  Sampling, reconstruction, resampling
!  Frequency analysis of signal content
!  Filter to avoid aliasing
!  Reduce visual artifacts due to aliasing

» Blurring is better than aliasing

•  Image processing
!  Forward vs. reverse mapping


