

Sampling, Resampling, and Warping

COS 426, Spring 2016 Adam Finkelstein

Image Processing Operations I

- Luminance
 - **Brightness**
 - Contrast.
 - Gamma

 - Color
 - Saturation
 - White balance

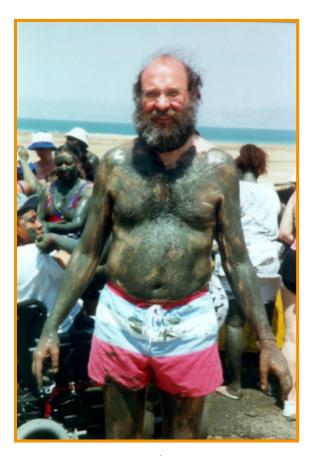
- Linear filtering
 - Blur & sharpen
 - Edge detect
 - Convolution
- Histogram equalitations Non-linear filtering
- Black & white hursda
 - Dithering
 - Quantization
 - Ordered dither
 - Floyd-Steinberg

Image Processing Operations II

- Transformation
 - Scale
 - Rotate
 - Warp
- Combining images
 - Composite
 - Morph
 - Comp photo

Thursday

Move pixels of an image

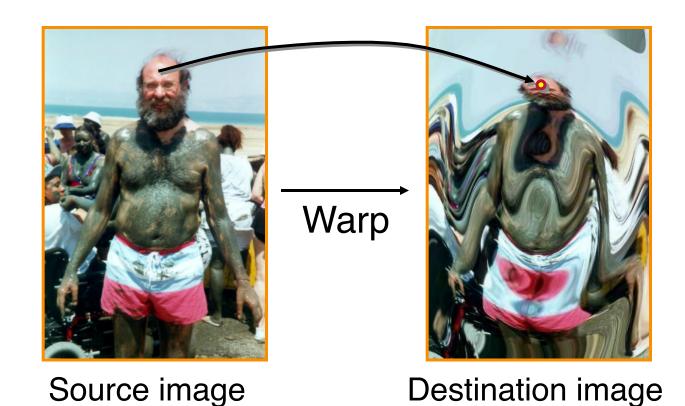


Source image

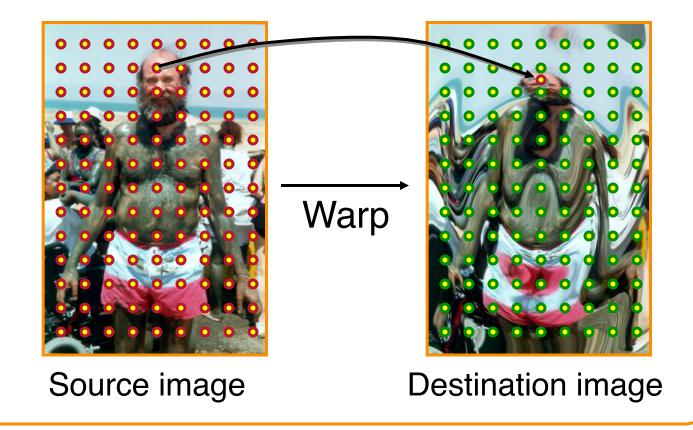
Warp

Destination image

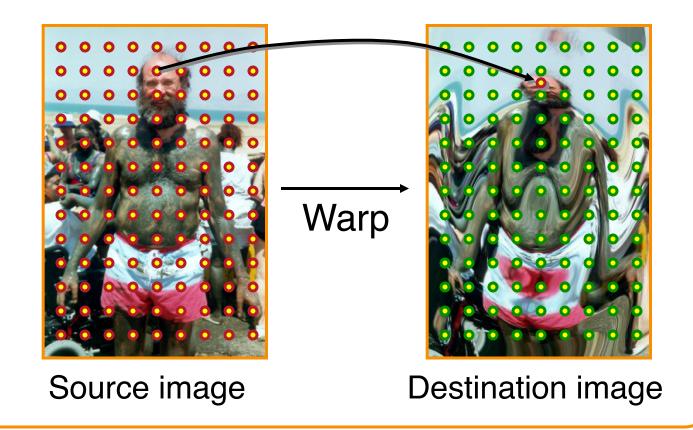
- Issues:
 - 1) Specifying where every pixel goes (mapping)



- Issues:
 - 1) Specifying where every pixel goes (mapping)
 - 2) Computing colors at destination pixels (resampling)

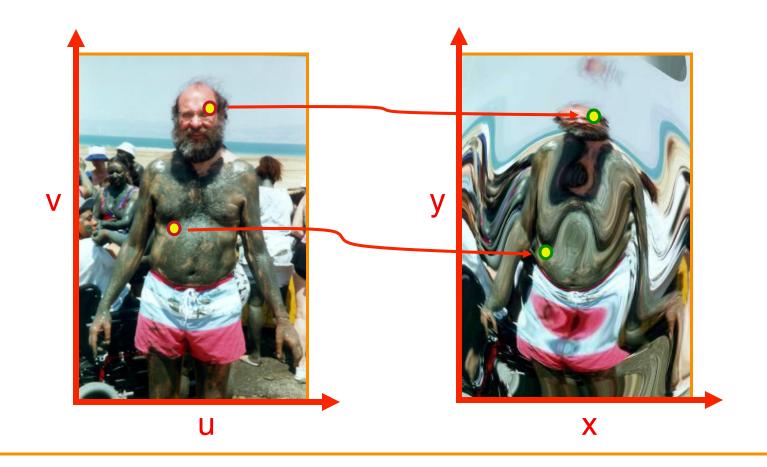


- Issues:
 - 1) Specifying where every pixel goes (mapping)
 - 2) Computing colors at destination pixels (resampling)



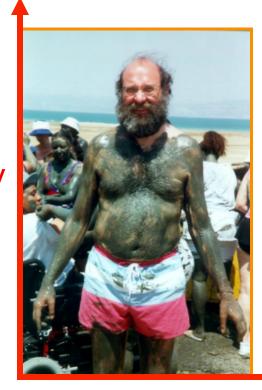
Mapping

- Define transformation
 - Describe the destination (x,y) for every source (u,v)

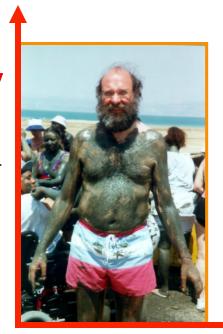


Parametric Mappings

- Scale by factor:
 - ∘ x = factor * u
 - ∘ y = factor * v



Scale 0.8



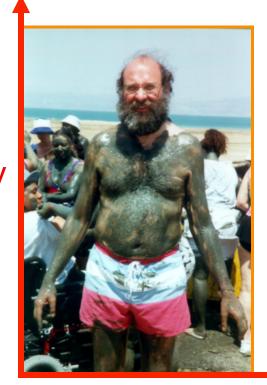
L

Parametric Mappings

Rotate by Θ degrees:

∘ $x = u\cos\Theta - v\sin\Theta$

∘ $y = usin\Theta + vcos\Theta$

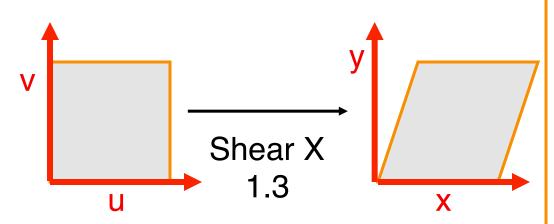


Rotate 30°

U

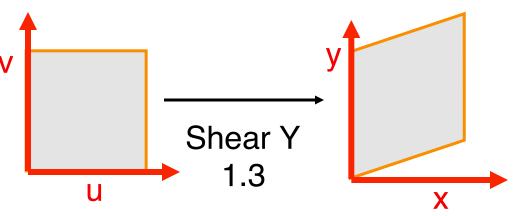
Parametric Mappings

- Shear in X by factor:
 - ∘ x = u + factor * v
 - \circ y = v



- Shear in Y by factor:
 - \circ X = U
 - ∘ y = v + *factor* * u

Non-obvious fact: You can make rotate out of three shears.

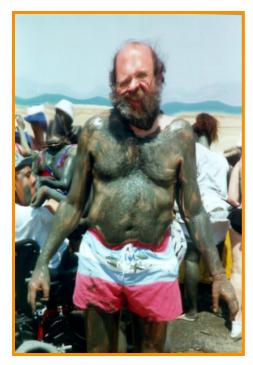


Other Parametric Mappings

- Any function of u and v:
 - $\circ x = f_x(u,v)$
 - $\circ \ \ y = f_y(u,v)$

Fish-eye

"Swirl"



"Rain"

COS426 Examples

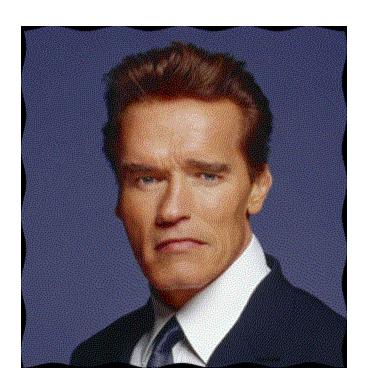
Aditya Bhaskara

Wei Xiang

More COS426 Examples

Sid Kapur

Michael Oranato

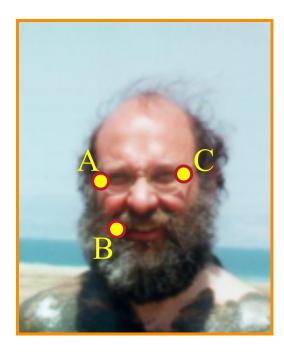


Eirik Bakke

Point Correspondence Mappings

- Mappings implied by correspondences:

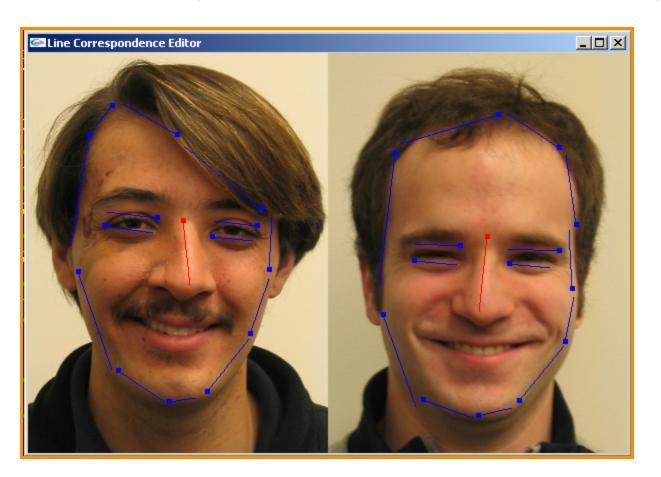
 - ∘ B ↔ B'
 - ∘ C ↔ C'



Warp

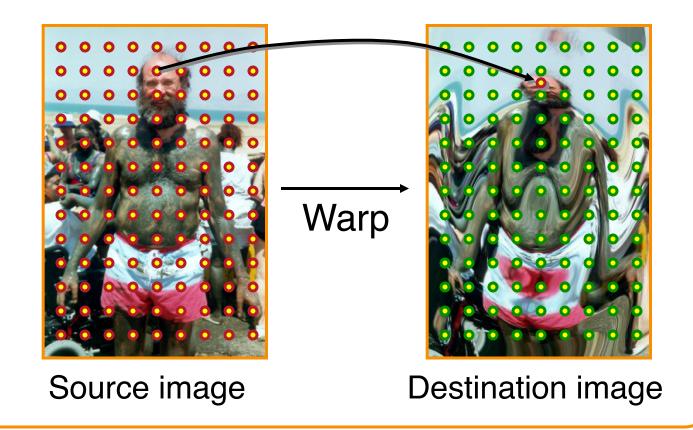
Line Correspondence Mappings

Beier & Neeley use pairs of lines to specify warps



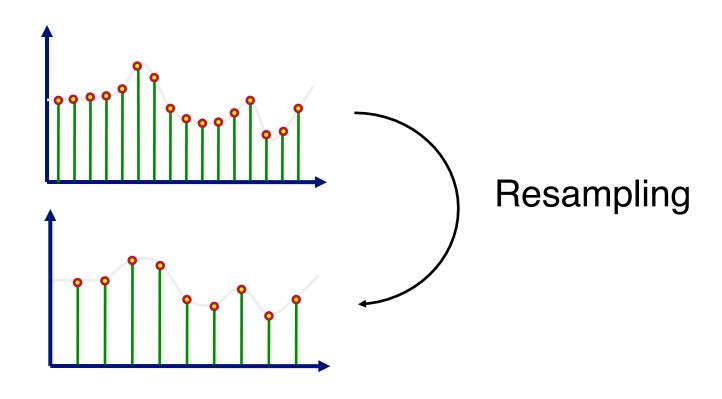
Discussed in next lecture....

- Issues:
 - 1) Specifying where every pixel goes (mapping)
 - 2) Computing colors at destination pixels (resampling)



Resampling

Simple example: scaling resolution = resampling



Resampling

Example: scaling resolution = resampling

Scaled

Original

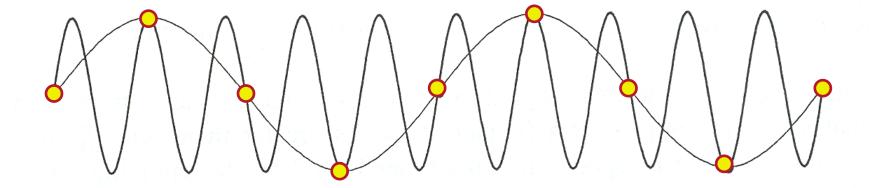
Resampling

Naïve resampling can cause visual artifa

Scaled

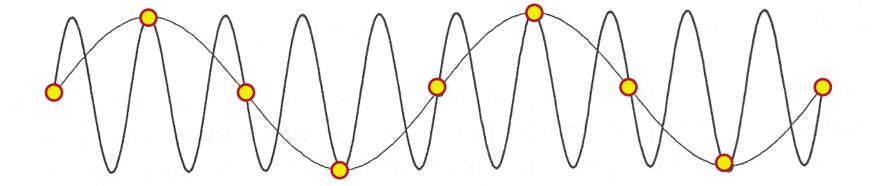
What is the Problem?

Aliasing

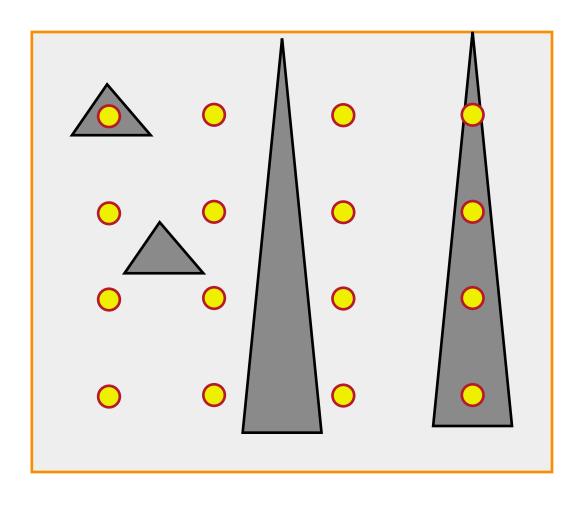


Aliasing

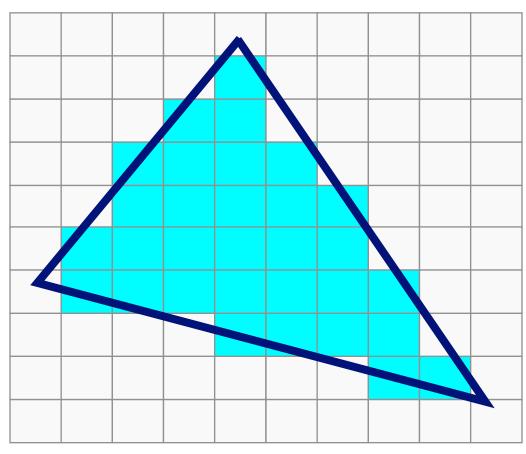
Artifacts due to under-sampling



Spatial Aliasing

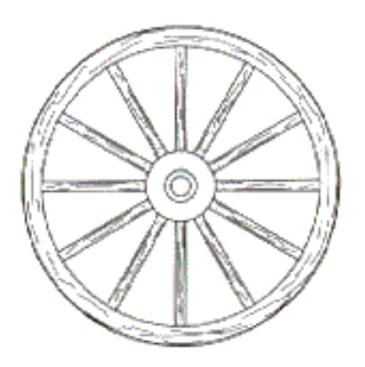


Spatial Aliasing

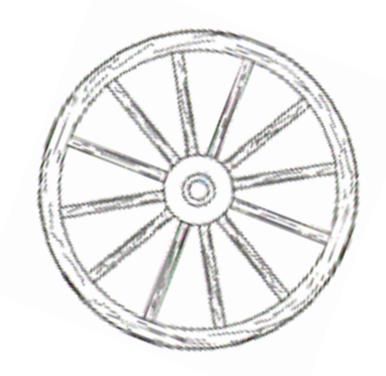


"Jaggies"

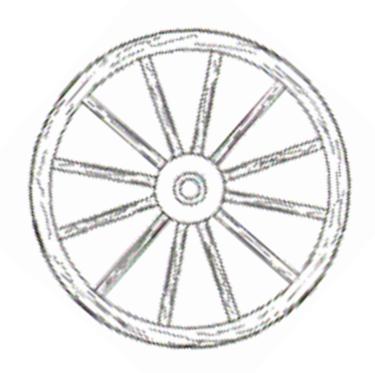
- Strobing
- Flickering



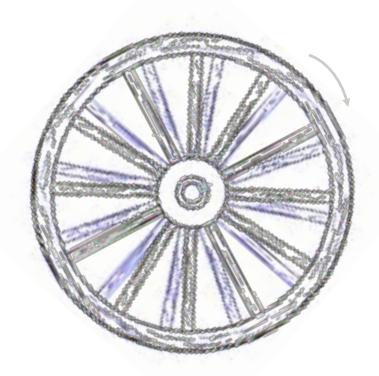
- Strobing
- Flickering



- Strobing
- Flickering

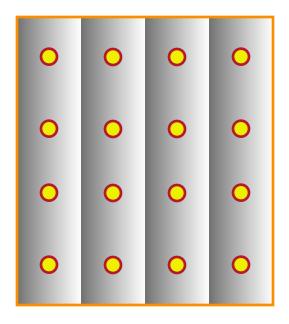


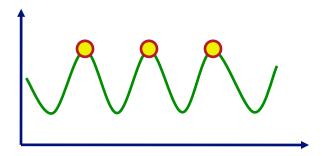
- Strobing
- Flickering



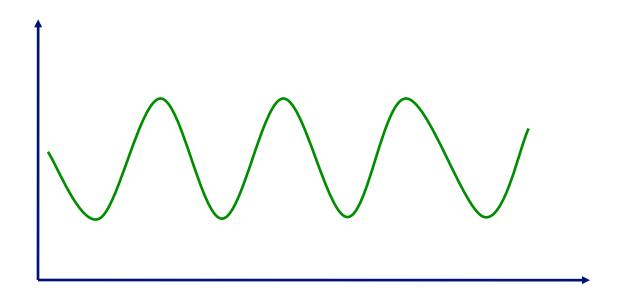
Aliasing

When we under-sample an image, we can create visual artifacts where high frequencies masquerade as low ones

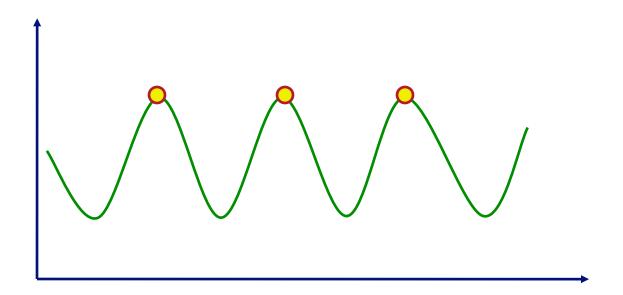




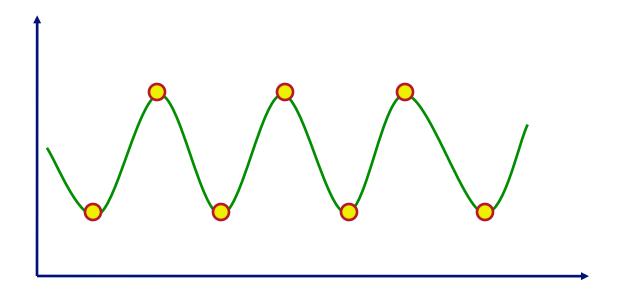
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



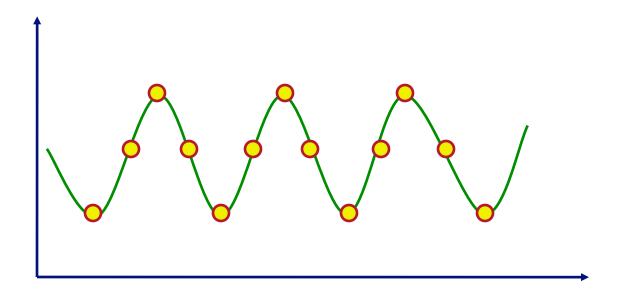
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



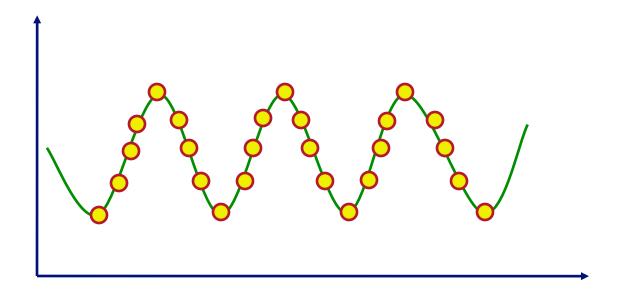
- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?



- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

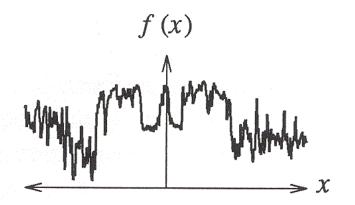


- How many samples are required to represent a given signal without loss of information?
- What signals can be reconstructed without loss for a given sampling rate?

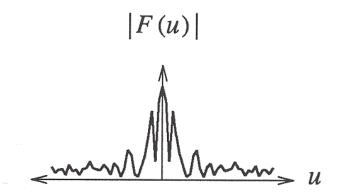


Spectral Analysis

- Spatial domain:
 - Function: f(x)
 - Filtering: convolution

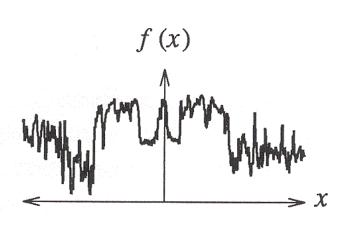


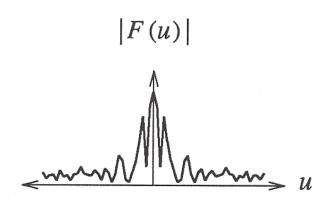
- Frequency domain:
- o Function: F(u)
- o Filtering: multiplication



Any signal can be written as a sum of periodic functions.

Fourier Transform





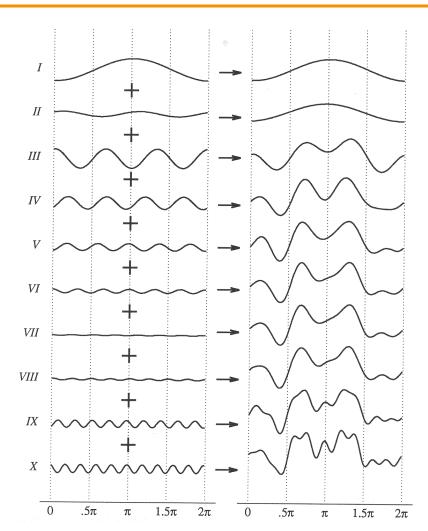


Figure 2.6 Wolberg

Fourier Transform

Fourier transform:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi xu} dx$$

Inverse Fourier transform:

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{+i2\pi ux}du$$

Sampling Theorem

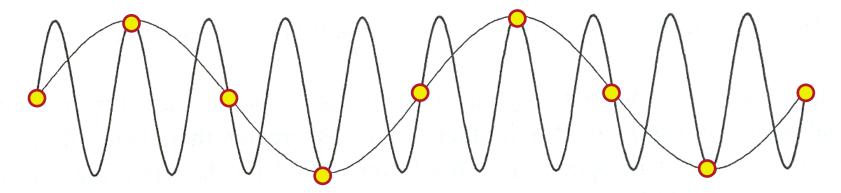
- A signal can be reconstructed from its samples, iff the original signal has no content
 ≥1/2 the sampling frequency - Shannon
- The minimum sampling rate for a "bandlimited" function is called the "Nyquist rate"

A signal is bandlimited if its highest frequency is bounded. The frequency is called the bandwidth.

Sampling Theorem

A signal can be reconstructed from its samples, iff the original signal has no content
 ≥1/2 the sampling frequency - Shannon

Aliasing will occur if the signal is under-sampled



Under-sampling

Figure 14.17 FvDFH

Sampling and Reconstruction

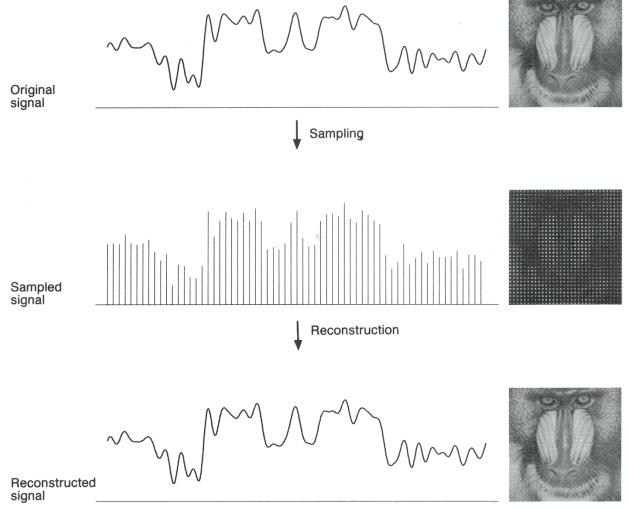
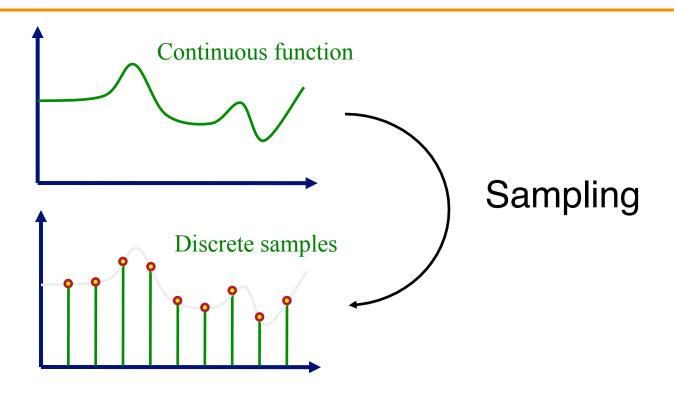


Figure 19.9 FvDFH

Sampling and Reconstruction



Sampling and Reconstruction

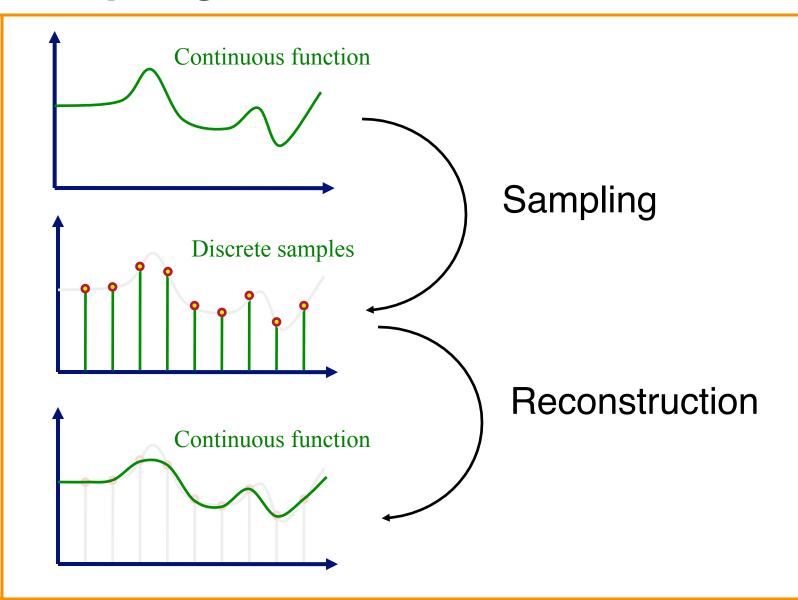
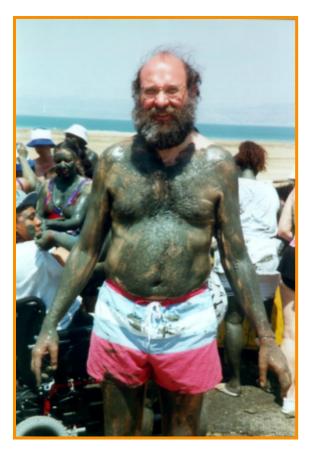


Image Processing

OK ... but how does that affect image processing?



Source image

Warp

Destination image

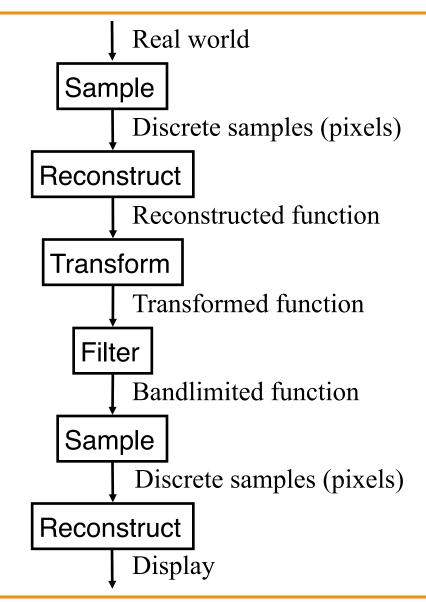
Image Processing

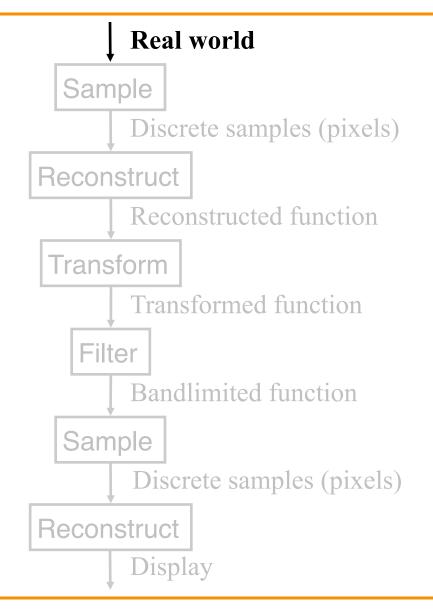
Image processing often requires resampling

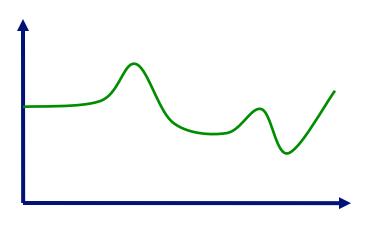
> Must band-limit before resampling to avoid aliasing

Original image

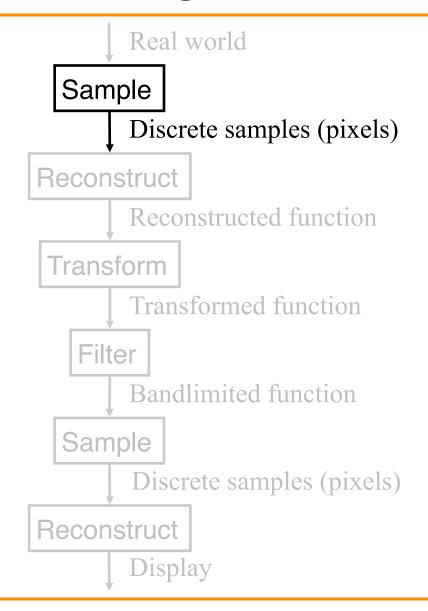
1/4 resolution

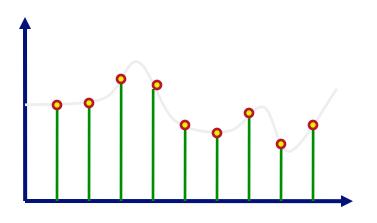




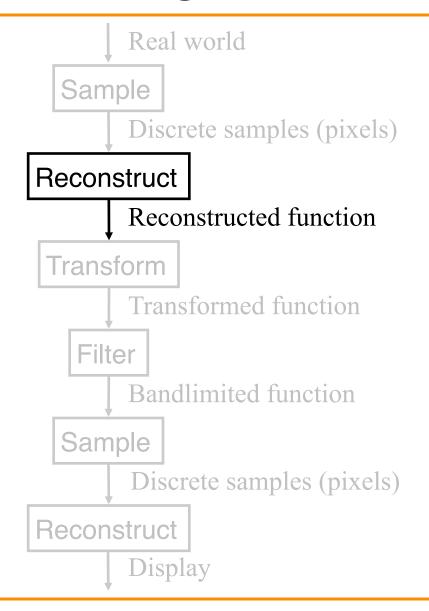


Continuous Function



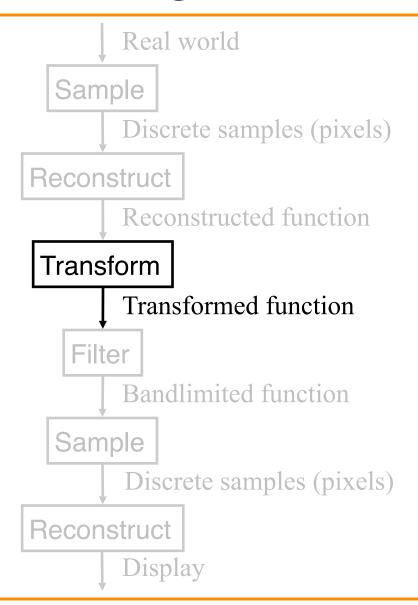


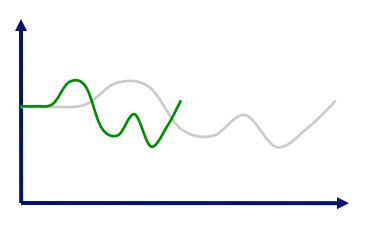
Discrete Samples





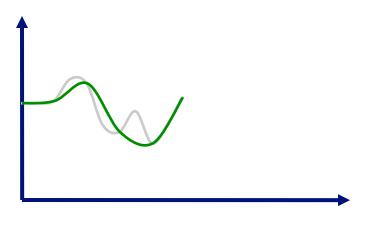
Reconstructed Function



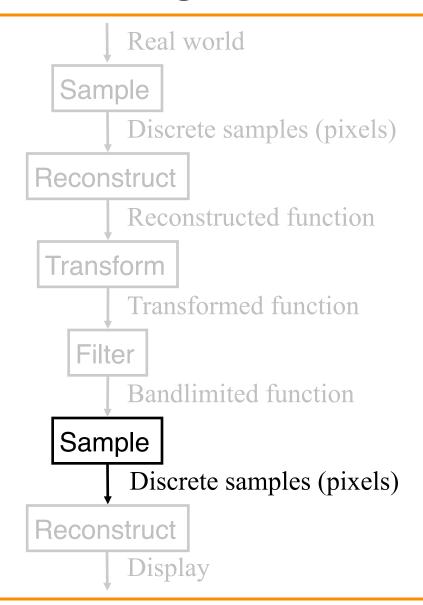


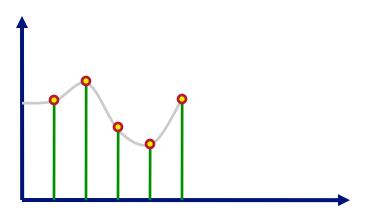
Transformed Function



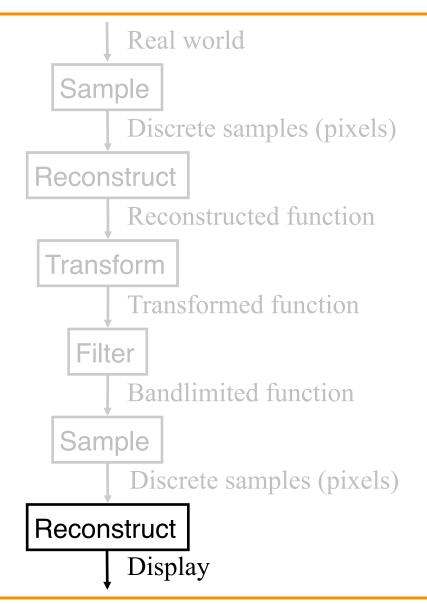


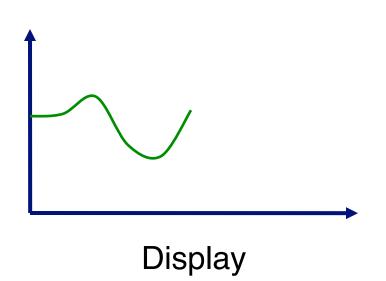
Bandlimited Function





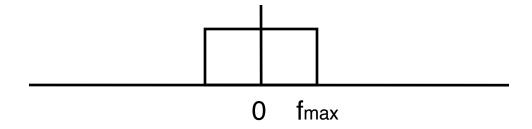
Discrete samples



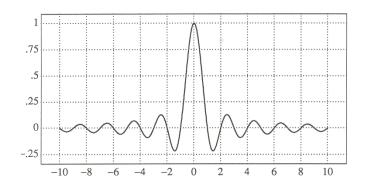


Ideal Bandlimiting Filter

Frequency domain



Spatial domain



$$Sinc(x) = \frac{\sin \pi x}{\pi x}$$

Figure 4.5 Wolberg

Practical Image Processing

- Finite low-pass filters
 - Point sampling (bad)
 - Box filter
 - Triangle filter
 - Gaussian filter

Sample Discrete samples (pixels) Reconstruct Filter Reconstructed function Transform _ow-Pass Transformed function Filter Bandlimited function Sample Discrete samples (pixels)

Reconstruct

Display

Real world

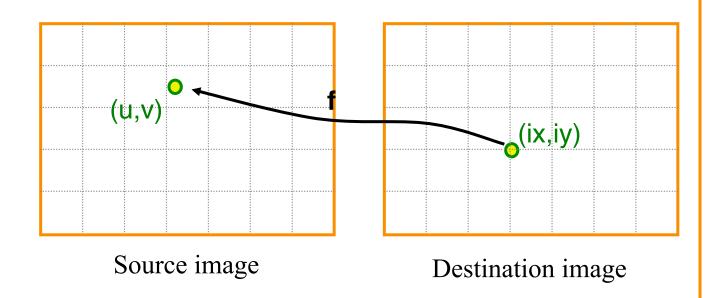
Practical Image Processing

Reverse mapping:

```
Warp(src, dst) {
  for (int ix = 0; ix < xmax; ix++) {
    for (int iy = 0; iy < ymax; iy++) {
       float w \approx 1 / scale(ix, iy);
       float u = f_x^{-1}(ix, iy);
       float v = f_v^{-1}(ix, iy);
       dst(ix,iy) = Resample(src,u,v,k,w);
                                              (ix,iy)
                 Source image
                                        Destination image
```

Resampling

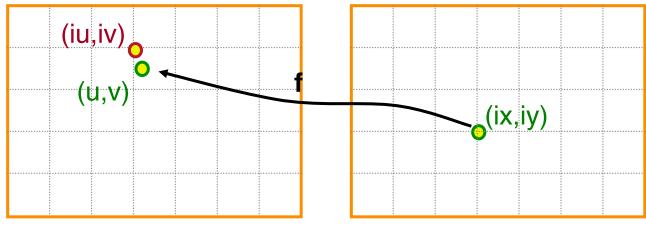
 Compute value of 2D function at arbitrary location from given set of samples



Point Sampling

Possible (poor) resampling implementation:

```
float Resample(src, u, v, k, w) {
  int iu = round(u);
  int iv = round(v);
  return src(iu,iv);
}
```

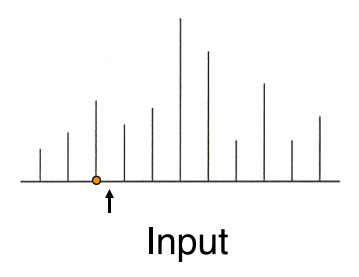


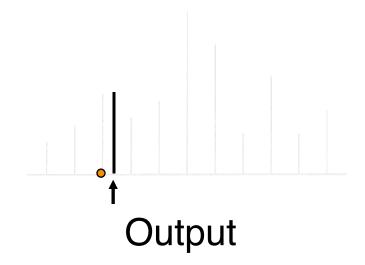
Source image

Destination image

Point Sampling

Use nearest sample





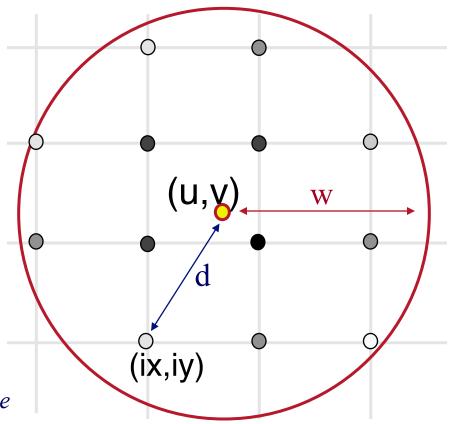
Point Sampling

Point Sampled: Aliasing!

Correctly Bandlimited

Resampling with Low-Pass Filter

 Output is weighted average of input samples, where weights are normalized values of filter (k)



k(ix,iy) represented by gray value

Resampling with Low-Pass Filter

Possible implementation:

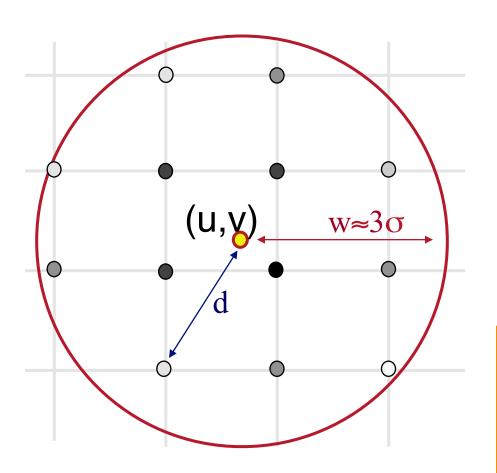
```
float Resample(src, u, v, k, w)
  float dst = 0;
  float ksum = 0;
  int ulo = u - w; etc.
  for (int iu = ulo; iu < uhi; iu++) {
    for (int iv = vlo; iv < vhi; iv++) {
      dst += k(u,v,iu,iv,w) * src(u,v)
      ksum += k(u,v,iu,iv,w);
  return dst / ksum;
                                             (ix,iy)
```

Source image

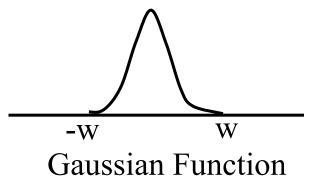
Destination image

Resampling with Gaussian Filter

Kernel is Gaussian function



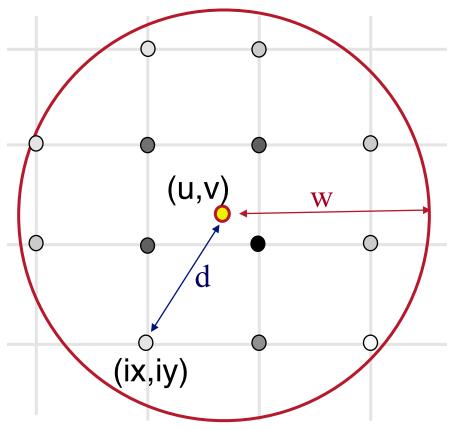
$$G(d,\sigma) = e^{-d^2/(2\sigma^2)}$$

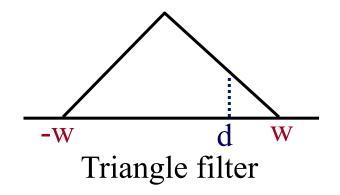


- Drops off quickly, but never gets to exactly 0
- In practice: compute out to $w \sim 2.5\sigma$ or 3σ

Resampling with Triangle Filter

For isotropic Triangle filter,
 k(ix,iy) is function of d and w



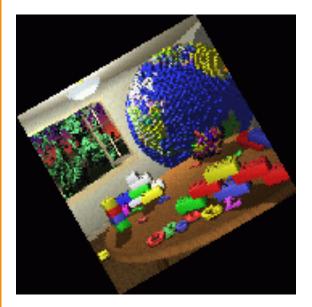


$$k(i,j)=\max(1-d/w, 0)$$

Filter Width = 2

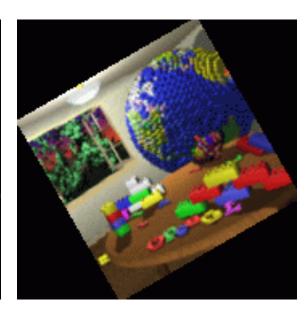
Sampling Method Comparison

- Trade-offs
 - Aliasing versus blurring
 - Computation speed



Point

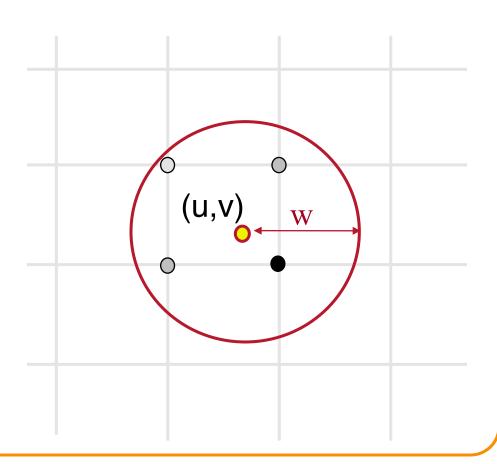
Triangle



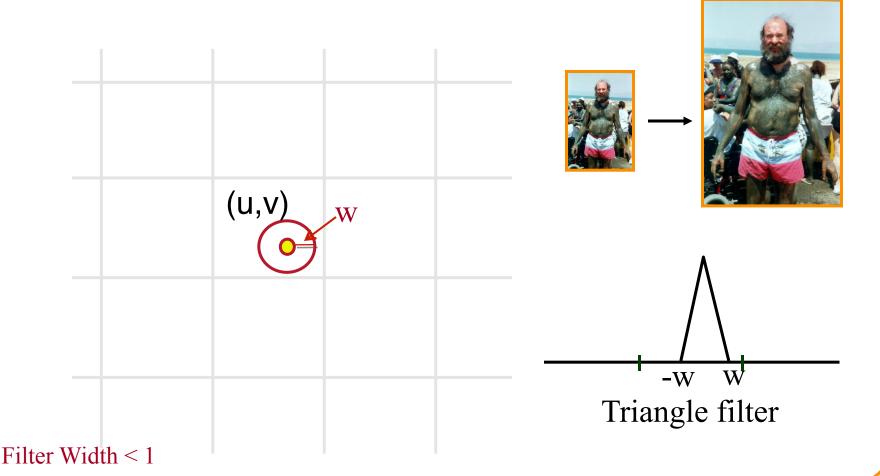
Gaussian

 Filter width chosen based on scale factor of map

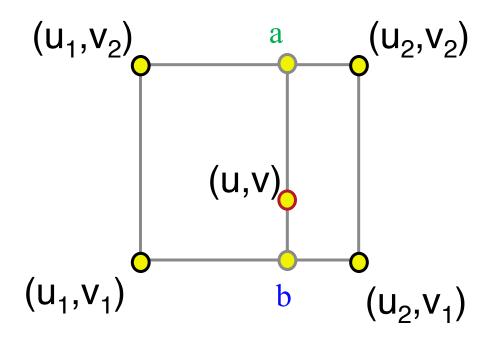
Filter must be wide enough to avoid aliasing



What if width (w) is smaller than sample spacing For example, when scaling an image larger.

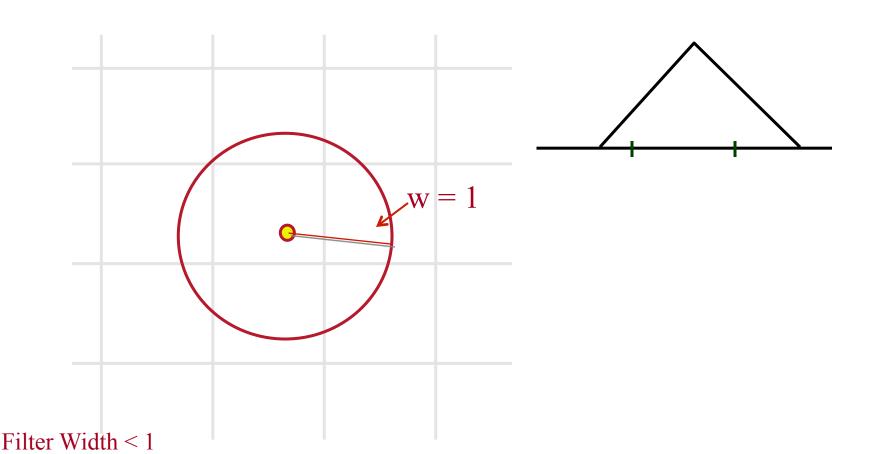


- Alternative 1: Bilinear interpolation of closest pixels
 - a = linear interpolation of src(u₁, v₂) and src(u₂, v₂)
 - b = linear interpolation of $src(u_1, v_1)$ and $src(u_2, v_1)$
 - dst(x,y) = linear interpolation of "a" and "b"



Filter Width < 1

Alternative 2: force width to be at least 1

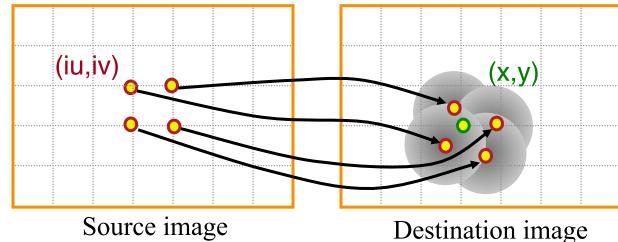


Forward mapping:

```
Warp(src, dst) {
  for (int iu = 0; iu < umax; iu++) {
    for (int iv = 0; iv < vmax; iv++) {
       float x = f_x(iu,iv);
      float y = f_v(iu,iv);
       float w \approx 1 / scale(x, y);
      Splat(src(iu,iv),x,y,k,w);
               (iu,iv)
                                             (x,y)
                 Source image
                                       Destination image
```


Forward mapping:

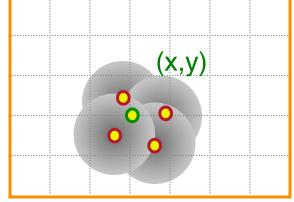
```
Warp(src, dst) {
  for (int iu = 0; iu < umax; iu++) {
    for (int iv = 0; iv < vmax; iv++) {
      float x = f_x(iu,iv);
      float y = f_v(iu,iv);
      float w \approx 1 / scale(x, y);
      Splat(src(iu,iv),x,y,k,w);
              (iu,iv)
```



Forward mapping:

```
for (int iu = 0; iu < umax; iu++) {
   for (int iv = 0; iv < vmax; iv++) {
     float x = f<sub>x</sub>(iu,iv);
     float y = f<sub>y</sub>(iu,iv);
     float w ≈ 1 / scale(x, y);
     for (int ix = xlo; ix <= xhi; ix++) {
        for (int iy = ylo; iy <= yhi; iy++) {
            dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
        }
     }
}</pre>
```

Problem?



Destination image

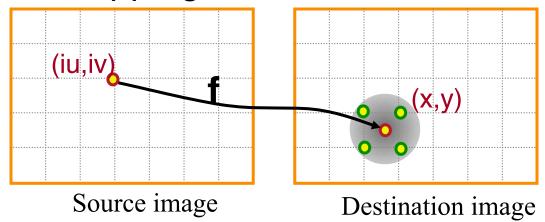
Forward mapping:

```
for (int iu = 0; iu < umax; iu++) {
  for (int iv = 0; iv < vmax; iv++) {
    float x = f_x(iu,iv);
    float y = f_v(iu,iv);
    float w \approx 1 / scale(x, y);
    for (int ix = xlo; ix \le xhi; ix++) {
      for (int iy = ylo; iy \le yhi; iy++) {
        dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
        ksum(ix,iy) += k(x,y,ix,iy,w);
                                          (x,y)
for (ix = 0; ix < xmax; ix++)
  for (iy = 0; iy < ymax; iy++)
    dst(ix,iy) /= ksum(ix,iy)
```

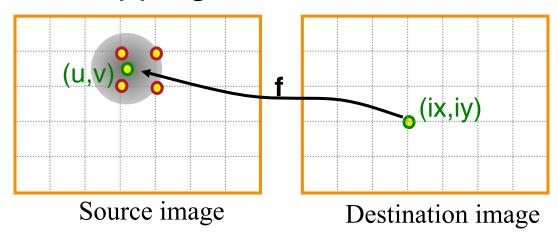
Destination image

Forward vs. Reverse Mapping?

Forward mapping



Reverse mapping



Forward vs. Reverse Mapping

- Tradeoffs:
 - Forward mapping:
 - Requires separate buffer to store weights
 - Reverse mapping:
 - Requires inverse of mapping function, random access to original image

Reverse mapping is usually preferable

Putting it All Together

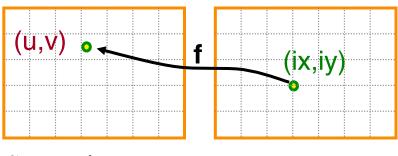
Possible implementation of image blur:

```
Blur(src, dst, sigma) {
    w ≈ 3*sigma;
    for (int ix = 0; ix < xmax; ix++) {
        for (int iy = 0; iy < ymax; iy++) {
            float u = ix;
            float v = iy;
            dst(ix,iy) = Resample(src,u,v,k,w);
        }
}</pre>
```


Putting it All Together

Possible implementation of image scale:

```
Scale(src, dst, sx, sy) {
    w ≈ max(1/sx,1/sy);
    for (int ix = 0; ix < xmax; ix++) {
        for (int iy = 0; iy < ymax; iy++) {
            float u = ix / sx;
            float v = iy / sy;
            dst(ix,iy) = Resample(src,u,v,k,w);
        }
    }
}</pre>
```



Source image

Destination image

Putting it All Together

Possible implementation of image rotation:

```
Rotate(src, dst, \Theta) {
  w ≈
  for (int ix = 0; ix < xmax; ix++) {
    for (int iy = 0; iy < ymax; iy++) {
      float u = ix*cos(-\Theta) - iy*sin(-\Theta);
      float v = ix*sin(-\Theta) + iy*cos(-\Theta);
      dst(ix,iy) = Resample(src,u,v,k,w);
                            Rotate
```

Summary

- Mapping
 - Parametric
 - Correspondences
- Sampling, reconstruction, resampling
 - Frequency analysis of signal content
 - Filter to avoid aliasing
 - Reduce visual artifacts due to aliasing
 - » Blurring is better than aliasing
- Image processing
 - Forward vs. reverse mapping