
1

Clustering II  
 

With application to gene-expression
profiling technology

Arjun Krishnan

Thanks to Kevin Wayne, Matt Hibbs, & SMD for a few of the slides

2

Hierarchical Clustering

Thanks to Kevin Wayne for many of the slides

3

Hierarchical clustering

4

Tumors in similar tissues cluster together

Reference: Botstein & Brown group

Gene 1

Gene n

gene over expressed
gene under expressed

Hierarchical clustering

5

Hierarchical clustering

Start with each gene in its
own cluster

Merge the closest pair
of clusters into a

single cluster

Compute distance b/w
new cluster and each of

the old clusters

Until all genes are
merged into a
single cluster

Merges are “greedy”

Complexity is at
least O(n2);
Naïve O(n3)

S. C. Johnson (1967)
"Hierarchical Clustering Schemes”
Psychometrika, 2:241-254

6

•  Distance metric
•  Linkage criteria

•  Single/Minimum linkage (nearest neighbors)

•  Complete/Maximum linkage (farthest neighbors)

•  Average linkage (average of all pairs)

Hierarchical clustering

7

Single-Link Hierarchical Clustering

Input. Pre-computed matrix of distances between all pairs
of genes (i, j).

Scheme. Erase rows and columns in the distance matrix as
old clusters are merged into new ones.

Begin. 
Each gene in its own cluster. 
For each cluster i, create/maintain index dmin[i] of closest
cluster.

dmin dist
1 5.5
3 2.14
4 5.6
1 2.14
3 5.5

0 1 2 3 4
- 5.5 7.3 8.9 5.8

5.5 - 6.1 2.14 5.6
7.3 6.1 - 7.8 5.6
8.9 2.14 7.8 - 5.5
5.8 5.6 5.6 5.5 -

gene0
1
2
3
4

0
1
2
3
4

8

Single-Link Hierarchical Clustering
Iteration.
•  Find closest pair of clusters (i1, i2).
•  Replace row i1 by min of row i1 and row i2.
•  Infinity out row i2 and column i2.
•  Update dmin[i] and change dmin[i'] to i1 if previously dmin[i'] = i2.

0 1 2 3 4
- 5.5 7.3 8.9 5.8

5.5 - 6.1 2.14 5.6
7.3 6.1 - 7.8 5.6
8.9 2.14 7.8 - 5.5
5.8 5.6 5.6 5.5 -

gene0
1
2
3
4

0 1 2 3 4
- 5.5 7.3 - 5.8

5.5 - 6.1 - 5.5
7.3 6.1 - - 5.6
- - - - -

5.8 5.5 5.6 - -

0
node1

2
3
4

dmin dist
1 5.5
3 2.14
4 5.6
1 2.14
3 5.5

0
1
2
3
4

dmin dist
1 5.5
0 5.5
4 5.6
- -
1 5.5

0
1
2
3
4

Closest
pair

gene1 closest
to gene3, 
dist = 2.14

New min
distance

- Merging into a cluster 
- Updating matrix with dist
between new cluster & old clusters

9

Single-Link Clustering: Main Loop
for (int s = 0; s < N-1; s++) {
 // find closest pair of clusters (i1, i2)
 int i1 = 0;
 for (int i = 0; i < N; i++)
 if (d[i][dmin[i]] < d[i1][dmin[i1]]) i1 = i;
 int i2 = dmin[i1];

 // overwrite row i1 with minimum of entries in row i1 and i2
 for (int j = 0; j < N; j++)
 if (d[i2][j] < d[i1][j]) d[i1][j] = d[j][i1] = d[i2][j];
 d[i1][i1] = INFINITY;

 // infinity-out old row i2 and column i2
 for (int i = 0; i < N; i++)
 d[i2][i] = d[i][i2] = INFINITY;

 // update dmin and replace ones that previous pointed to
 // i2 to point to i1
 for (int j = 0; j < N; j++) {
 if (dmin[j] == i2) dmin[j] = i1;
 if (d[i1][j] < d[i1][dmin[i1]]) dmin[i1] = j;
 }
}

?

Find closest pair of clusters (i1, i2).

Replace row i1 by min of row i1 and row i2.

Infinity out row i2 and column i2.

Update dmin[i] 
Change dmin[i'] to i1 if previously dmin[i'] = i2.

10

Single-Link Clustering: Main Loop
for (int s = 0; s < N-1; s++) {
 // find closest pair of clusters (i1, i2)
 int i1 = 0;
 for (int i = 0; i < N; i++)
 if (d[i][dmin[i]] < d[i1][dmin[i1]]) i1 = i;
 int i2 = dmin[i1];

 // overwrite row i1 with minimum of entries in row i1 and i2
 for (int j = 0; j < N; j++)
 if (d[i2][j] < d[i1][j]) d[i1][j] = d[j][i1] = d[i2][j];
 d[i1][i1] = INFINITY;

 // infinity-out old row i2 and column i2
 for (int i = 0; i < N; i++)
 d[i2][i] = d[i][i2] = INFINITY;

 // update dmin and replace ones that previous pointed to
 // i2 to point to i1
 for (int j = 0; j < N; j++) {
 if (dmin[j] == i2) dmin[j] = i1;
 if (d[i1][j] < d[i1][dmin[i1]]) dmin[i1] = j;
 }
}

11

Dendrogram

•  Leaves = genes.
•  Internal nodes = hypothetical ancestors.

Reference: http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf

12

Dendrogram of Human tumors

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

Gene 1

Gene n

gene over expressed
gene under expressed

13

public static void main(String[] args) {
 TreeNode a = new TreeNode("GENE1");
 TreeNode b = new TreeNode("GENE2");
 TreeNode c = new TreeNode("GENE3");
 TreeNode d = new TreeNode("GENE4");

 TreeNode x = new TreeNode("NODE1", b, c);
 TreeNode y = new TreeNode("NODE2", a, x);
 TreeNode z = new TreeNode("NODE3", d, y);

 System.out.println(a.lca(b));
 a.lca(b).showLeaves();
}

Ancestor Tree
Root. Node with no parent.
Leaf. Node with no children.
Depth. Length of path from node to root.
Least Common Ancestor. Common ancestor with largest depth.

a b c d

x

y

z

leaves

root

What are leaves of y? What’s LCA of a and b? lca(a, b) = y, leaves of y = { a, b, c }

14

Ancestor Tree: Implementation

a b c d

x

y

z

leaves

root

a b c d

x

y

z

How would you represent a node in java to be able to find LCAs
or Children?

Hint: think pointers!

Node. Left pointer, right pointer, parent pointer.
Consequence. Can go up or down the tree.

15

Ancestor Tree

public class TreeNode {
 private TreeNode parent; // parent
 private TreeNode left, right; // two children
 private String name; // name of node

 // create a leaf node
 public TreeNode(String name) {
 this.name = name;
 }

 // create an internal node that is the parent of x and y
 public TreeNode(String name, TreeNode x, TreeNode y) {
 this.name = name;
 this.left = x;
 this.right = y;
 x.parent = this;
 y.parent = this;
 }

16

Ancestor Tree: Helper Functions

// return depth of this node in the tree
// depth of root = 0
public int depth() {
 int depth = 0;
 for (TreeNode x = this; x.parent != null; x = x.parent)
 depth++;
 return depth;
}

// return root
public TreeNode root() {
 TreeNode x = this;
 while (x.parent != null)
 x = x.parent;
 return x;
}

17

How would you calculate
LCA of x & y?

Ancestor Tree: Least Common Ancestor

// return the lca of node x and y
public TreeNode lca(TreeNode y) {
 TreeNode x = this;
 int dx = x.depth();
 int dy = y.depth();
 if (dx < dy) {
 for (int i = 0; i < dy-dx; i++) y = y.parent;
 }
 else {
 for (int i = 0; i < dx-dy; i++) x = x.parent;
 }
 while (x != y) {
 x = x.parent;
 y = y.parent;
 }
 return x;
 }

depth = 5 depth = 3

x y

z

z = lca(x, y)

18

Ancestor Tree: Tree Traversal

// return string representation
public String toString() { return name; }

// print all leaves in tree rooted at this node
public void showLeaves() {
 if (left == null && right == null) System.out.println(this);
 else {
 left.showLeaves();
 right.showLeaves();
 }
}

// print the tree rooted at this node
public void show() {
 if (left == null && right == null) return;
 System.out.println(name + " " + left.name + " " + right.name);
 left.show();
 right.show();
}

x

Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • http://www.cs.Princeton.EDU/IntroCS

Hierarchical clustering
implementation

20

Single-Link Clustering: Java Implementation

Single-link clustering.
•  Read in the data.

public static void main(String[] args) {
 int M = StdIn.readInt();
 int N = StdIn.readInt();

 // read in N vectors of dimension M
 Vector[] vectors = new Vector[N];
 String[] names = new String[N];
 for (int i = 0; i < N; i++) {
 names[i] = StdIn.readString();
 double[] d = new double[M];
 for (int j = 0; j < M; j++)
 d[j] = StdIn.readDouble();
 vectors[i] = new Vector(d);
 }

21

Single-Link Clustering: Java Implementation

Single-link clustering.
•  Read in the data.
•  Precompute d[i][j] = distance between cluster i and j.
•  For each cluster i, maintain index dmin[i] of closest cluster.

double INFINITY = Double.POSITIVE_INFINITY;
double[][] d = new double[N][N];
int[] dmin = new int[N];
for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 if (i == j) d[i][j] = INFINITY;
 else d[i][j] = vectors[i].distanceTo(vectors[j]);
 if (d[i][j] < d[i][dmin[i]]) dmin[i] = j;
 }
}

0 1 2 3 4
- 5.5 7.3 8.9 5.8

5.5 - 6.1 2.14 5.6
7.3 6.1 - 7.8 5.6
8.9 2.14 7.8 - 5.5
5.8 5.6 5.6 5.5 -

gene0
1
2
3
4

dmin dist
1 5.5
3 2.14
4 5.6
1 2.14
3 5.5

0
1
2
3
4

22

Single-Link Clustering: Main Loop
for (int s = 0; s < N-1; s++) {
 // find closest pair of clusters (i1, i2)
 int i1 = 0;
 for (int i = 0; i < N; i++)
 if (d[i][dmin[i]] < d[i1][dmin[i1]]) i1 = i;
 int i2 = dmin[i1];

 // overwrite row i1 with minimum of entries in row i1 and i2
 for (int j = 0; j < N; j++)
 if (d[i2][j] < d[i1][j]) d[i1][j] = d[j][i1] = d[i2][j];
 d[i1][i1] = INFINITY;

 // infinity-out old row i2 and column i2
 for (int i = 0; i < N; i++)
 d[i2][i] = d[i][i2] = INFINITY;

 // update dmin and replace ones that previous pointed to
 // i2 to point to i1
 for (int j = 0; j < N; j++) {
 if (dmin[j] == i2) dmin[j] = i1;
 if (d[i1][j] < d[i1][dmin[i1]]) dmin[i1] = j;
 }
}

Find closest pair of clusters (i1, i2).

Replace row i1 by min of row i1 and row i2.

Infinity out row i2 and column i2.

Update dmin[i] 
Change dmin[i'] to i1 if previously dmin[i'] = i2.

23

Single-Link Clustering: Main Loop
for (int s = 0; s < N-1; s++) {
 // find closest pair of clusters (i1, i2)
 int i1 = 0;
 for (int i = 0; i < N; i++)
 if (d[i][dmin[i]] < d[i1][dmin[i1]]) i1 = i;
 int i2 = dmin[i1];

 // overwrite row i1 with minimum of entries in row i1 and i2
 for (int j = 0; j < N; j++)
 if (d[i2][j] < d[i1][j]) d[i1][j] = d[j][i1] = d[i2][j];
 d[i1][i1] = INFINITY;

 // infinity-out old row i2 and column i2
 for (int i = 0; i < N; i++)
 d[i2][i] = d[i][i2] = INFINITY;

 // update dmin and replace ones that previous pointed to
 // i2 to point to i1
 for (int j = 0; j < N; j++) {
 if (dmin[j] == i2) dmin[j] = i1;
 if (d[i1][j] < d[i1][dmin[i1]]) dmin[i1] = j;
 }
}

•  Closest pair of clusters (i, j) is one with the smallest dist value.
•  Replace row i by min of row i and row j.
•  Infinity out row j and column j.
•  Update dmin[i] and change dmin[i'] to i if previously dmin[i'] = j.

0 1 2 3 4
- 5.5 7.3 8.9 5.8

5.5 - 6.1 2.14 5.6
7.3 6.1 - 7.8 5.6
8.9 2.14 7.8 - 5.5
5.8 5.6 5.6 5.5 -

gene0
1
2
3
4

dmin dist
1 5.5
3 2.14
4 5.6
1 2.14
3 5.5

0
1
2
3
4

Closest
pair gene1 closest

to gene3, 
dist = 2.14

0 1 2 3 4
- 5.5 7.3 - 5.8

5.5 - 6.1 - 5.5
7.3 6.1 - - 5.6
- - - - -

5.8 5.5 5.6 - -

0
node1

2
3
4

New min distdmin dist
1 5.5
0 5.5
4 5.6
- -
1 5.5

0
1
2
3
4

24

Store Centroids in Each Internal Node

Cluster analysis.
Centroids distance / similarity.

Easy modification to TreeNode data structure.
•  Store Vector in each node.

•  leaf nodes: directly corresponds to a gene
•  internal nodes: centroid = average of all leaf nodes beneath it

• Maintain count field in each TreeNode, which equals the number
of leaf nodes beneath it.

• When setting z to be parent of x and y,
•  set z.count = x.count + y.count
•  set z.vector = αp + (1-α)q, where p = x.vector and q = y.vector, and
α = x.count / z.count

25

Analysis and Micro-Optimizations
Running time. Proportional to MN2 (N genes, M arrays)
Memory. Proportional to N2.

Ex. [M = 50, N = 6,000] Takes 280MB, 48 sec on fast
PC.

Some optimizations.
•  Use float instead of double
•  Store only lower triangular part of distance matrix
•  Use squares of distances instead of distances.

input size proportional to MN

•  use float to decrease memory usage by a factor of 2x, but probably
doesn't make it faster
•  storing only lower triangular part decreases memory usage by a factor
of 2x and makes things somewhat faster
•  only about 10% of time is spent precomputing distance matrix, so
avoiding square roots will help, but not that much

How much do you think would this help?

26

Hierarchical clustering: problems
•  Hard to define distinct clusters

•  Genes assigned to clusters on the basis of all
experiments

•  Optimizing node ordering hard (finding the
optimal solution is NP-hard)

•  Can be influenced by one strong cluster – a
problem for gene expression b/c data in row
space is often highly correlated

27

Distance Metrics
•  Choice of distance measure is important for most clustering

techniques
•  Linear measures: Euclidean distance, Pearson correlation
•  Non-parametric: Spearman correlation, Kendall’s tau

€

d =
1
n

(xi − yi)
2

i=1

n

∑

€

r =
1
n

xi − x
σ x

$

%
&

'

(
)

i=1

n

∑ yi − y
σ y

$

%
& &

'

(
))

€

ρ =1−
6 [rank(xi) − rank(yi)]
i=1

n

∑
n(n2 −1)

Distance Metrics

Consider the following plot of 3 pairs of genes

No correlation Positive correlation Negative correlation

Distance Metrics
Pearson correlation (r) is a measure of the linear correlation

(dependence) between two variables X and Y.

+1 ≤ r ≤ −1
+1 is total positive

correlation
0 is no correlation
−1 is total negative

correlation.

Distance Metrics

Anscombe’s quartet11 datapoints

Mean (x) = 9
Var (x) = 11

Mean (y) = 7.50
Var (y) ~ 4.12

Cor (x, y) = 0.816

Linear regression line:

y = 3.00 + 0.500x

Anscombe, F. J. (1973). "Graphs in Statistical
Analysis". American Statistician 27 (1): 17–21.

31

Distance Metrics
•  Choice of distance measure is important for most clustering

techniques
•  Linear measures: Euclidean distance, Pearson correlation
•  Non-parametric: Spearman correlation, Kendall’s tau

€

d =
1
n

(xi − yi)
2

i=1

n

∑

€

r =
1
n

xi − x
σ x

$

%
&

'

(
)

i=1

n

∑ yi − y
σ y

$

%
& &

'

(
))

€

ρ =1−
6 [rank(xi) − rank(yi)]
i=1

n

∑
n(n2 −1)

32

Distance Metrics
•  Choose your distance measure carefully.

•  In general, before you begin analysis:

•  Explore your data by:
•  Doing simple sanity-checks: “Is the mean, variance,

and range of values as expected?”, “Are there too
many missing values?”

•  Looking at your data [There is no substitute for this]:
Plot small portions of the data in different ways and
visualize trends, shapes, relationships, etc.

Introduction to Computer Science • Robert Sedgewick and Kevin Wayne • http://www.cs.Princeton.EDU/IntroCS

The End

