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With application to gene-expression 
profiling technology 
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Thanks to Kevin Wayne, Matt Hibbs, & SMD for a few of the slides
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Measure the 
activity of 
genes in various 
cellular 
conditions

Measure the 
activity of 
people in 
various social 
instances
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Why is expression important?
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From Genes to Proteins

Transcription:
DNA to mRNA


Translation:
mRNA to Proteins

DNA

mRNA

Protein

Ribosome
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Proteins are the “workhorses” of cells
•  To understand how cells work is to understand proteins


Understanding proteins and cells is key for finding 
disease treatments and cures
•  Modern drug development is centered on affecting 

proteins (receptors, hormones, etc.)

But… Proteins are hard to study directly, so 
microarrays look at the mRNA instead.

Proteins
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       Hybridization
Expression microarrays use the fact 
that complementary strands will 
hybridize (attach) to each other
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Early cDNA microarray 
(18,000 clones)
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Microarray Methodology
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Microarray Methodology

Spot slide with 
known sequences
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Microarray Methodology

reference mRNA test mRNA

Spot slide with 
known sequences

Reference sample Test cells
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Microarray Methodology

Spot slide with 
known sequences

Add mRNA to slide 
for Hybridization

Scan hybridized array

reference mRNA test mRNA

add green dye add red dye

hybridize
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Microarray Methodology

Spot slide with 
known sequences

Add mRNA to slide 
for Hybridization

Scan hybridized array

reference mRNA test mRNA

add green dye add red dye

hybridize A 1.5 

B 0.8 

C -1.2 

D 0.1 



15

Microarray Outputs

Measure amounts of green and 
red dye on each spot

Represent level of expression as a 
log ratio between these amounts

Raw Image from Spellman et al., 98
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Experiments

Extracting Data
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Some questions you can tackle with high-
throughput gene-expression

•  What is going on in the cell at a certain point in 
time?

§  what genes/pathways are active?



•  On a genomic level, what accounts for differences 
between phenotypes?

§  which genes/pathways are activated in stress 
response?

Large-scale study of biological processes



Introduction to Computer Science     •     Robert Sedgewick and Kevin Wayne     •    http://www.cs.Princeton.EDU/IntroCS 

Clustering

Outbreak of cholera deaths on map in 1850s.
Reference: Nina Mishra, HP Labs

History: London physicist John 
Snow plotted outbreak of 
cholera deaths on map in 
1850s.  Location indicated that 
clusters were around certain 
intersections with polluted 
wells; this exposed the 
problem and solution!
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What is clustering?
Reordering of vectors in a dataset so that 
similar patterns are next to each other

"Cluster-2" by Cluster-2.gif: hellispderivative work: Wgabrie (talk) - Cluster-2.gif. Licensed under 
Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/
File:Cluster-2.svg#mediaviewer/File:Cluster-2.svg
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Why cluster microarray data?

•  Guilt-by-association: if unknown gene i is 
similar in expression to known gene j, maybe 
they are involved in the same/related 
pathway


•  Dimensionality reduction: datasets are too 

big to be able to get information out without 
reorganizing the data
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Botstein & Brown group



22From Eisen MB, et al, PNAS 1998 95(25):14863-8 

Clustering Random vs Biological Data

Challenge: 
when is 
clustering 
“real”?
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K-means clustering

Define k = #clusters

Randomly initialize 
cluster centers

Assign each point 
to its closest center

Recalculate each center 
= median of its members

Until <stop condition>



K-means clustering

http://www.naftaliharris.com/blog/visualizing-
k-means-clustering/

DEMO



K-means clustering
Conceptually similar to Expectation-Maximization



EM iteration alternates between 2 two steps:



1. E step: Creates a function for the expectation of the log-likelihood 

evaluated using the current estimate for the parameters, and



2. M step: Computes parameters maximizing the expected log-

likelihood found on the E step.



These parameter-estimates are then used to determine the distribution 

of the latent variables in the next E step.
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•  Until the change in centers is less than 
<constant>

•  Until all genes get assigned to the same 
partition twice in a row

•  Until some minimal number of genes (e.g. 
90%) get assigned to the same partition 
twice in a row

K-means clustering

Stopping condition
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•  Have to set k ahead of time

•  Prefers clusters of approx. similar sizes

•  Each gene only belongs to 1 cluster

•  Genes assigned to clusters on the basis 
of all experiments

K-means clustering

Some issues
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Hierarchical clustering

•  Imposes hierarchical structure on all of 
the data

•  Easy visualization of similarities and 
differences between genes 
(experiments) and clusters of genes 
(experiments)
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Hierarchical clustering

Start with each pattern 
in its own cluster

Join patterns that are 
most similar

Compare joined patterns 
to all un-joined patterns

Until all patterns 
are merged into a 

single cluster
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Hierarchical clustering
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Dendrogram
–  Leaves = genes.
–  Internal nodes = hypothetical ancestors.

Reference:  http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf
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Dendrogram of Human tumors

Tumors in similar tissues cluster together.


Reference:  Botstein & Brown group

Gene 1

Gene n

gene over expressed
gene under expressed


