Clustering

With application to gene-expression profiling technology

Thanks to Kevin Wayne, Matt Hibbs, & SMD for a few of the slides
Why is expression important?

Understanding cellular and human biology

Understanding civil life and sociology
Why is expression important?

Understanding cellular and human biology

Understanding civil life and sociology
Why is expression important?

Measure the activity of genes in various cellular conditions → Understanding cellular and human biology

Measure the activity of people in various societal conditions → Understanding civil life and sociology
Why is expression important?

Gene Expression

Chromosome

DNA

DNA

Proteins

Phenotype
From Genes to Proteins

Transcription:
DNA to mRNA

Translation:
mRNA to Proteins
Proteins

Proteins are the “workhorses” of cells
• To understand how cells work is to understand proteins

Understanding proteins and cells is key for finding disease treatments and cures
• Modern drug development is centered on affecting proteins (receptors, hormones, etc.)

But… Proteins are hard to study directly, so microarrays look at the mRNA instead.
Hybridization

Expression microarrays use the fact that complementary strands will hybridize (attach) to each other.
Early cDNA microarray
(18,000 clones)
Microarray Methodology
Microarray Methodology

Spot slide with known sequences
Microarray Methodology

Spot slide with known sequences

Reference sample

test mRNA

Reference mRNA

Test cells
Microarray Methodology

reference mRNA

add green dye

Spot slide with known sequences

test mRNA

add red dye
Microarray Methodology

1. Add mRNA to the slide for Hybridization
2. Spot the slide with known sequences
3. Reference mRNA: add green dye
4. Test mRNA: add red dye
5. Hybridize
Microarray Methodology

1. **Spot slide with known sequences**
2. **Add mRNA to slide for Hybridization**
3. **Hybridize**
4. **Scan hybridized array**

Steps:
- Add green dye to reference mRNA
- Add red dye to test mRNA

Flow:
1. Spot slide with known sequences
2. Add mRNA to slide for Hybridization
3. Hybridize
4. Scan hybridized array
5. Reference mRNA
6. Test mRNA
Microarray Methodology

1. **Spot slide with known sequences**
2. **Add mRNA to slide for Hybridization**
3. **Hybridize**
4. **Scan hybridized array**

- Reference mRNA
 - Add green dye
- Test mRNA
 - Add red dye

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.5</td>
</tr>
<tr>
<td>B</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>-1.2</td>
</tr>
<tr>
<td>D</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Microarray Methodology

Spot slide with known sequences

Add mRNA to slide for Hybridization

Scan hybridized array

Reference mRNA
- add green dye

Test mRNA
- add red dye

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>1.5</td>
<td>0.8</td>
<td>-1.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Microarray Outputs

Measure amounts of green and red dye on each spot

Represent level of expression as a log ratio between these amounts

Raw Image from Spellman et al., 98
Extracting Data

Table

<table>
<thead>
<tr>
<th>Cy3</th>
<th>Cy5</th>
<th>(\frac{Cy5}{Cy3})</th>
<th>(\log_2 \left(\frac{Cy5}{Cy3} \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>10000</td>
<td>50.00</td>
<td>5.64</td>
</tr>
<tr>
<td>4800</td>
<td>4800</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9000</td>
<td>300</td>
<td>0.03</td>
<td>-4.91</td>
</tr>
</tbody>
</table>

Diagram

- **Experiments** → **Genes**

- **Cy3**
- **Cy5**

\[
\begin{pmatrix}
\text{Cy3} & \text{Cy5} & \frac{\text{Cy5}}{\text{Cy3}} & \log_2 \left(\frac{\text{Cy5}}{\text{Cy3}} \right)
\end{pmatrix}
\]
Some questions you can tackle with high-throughput gene-expression

Large-scale study of biological processes

- What is going on in the cell at a certain point in time?
 - what genes/pathways are active?

- On a genomic level, what accounts for differences between phenotypes?
 - which genes/pathways are activated in stress response?
Clustering

History: London physicist John Snow plotted outbreak of cholera deaths on map in 1850s. Location indicated that clusters were around certain intersections with polluted wells; this exposed the problem and solution!

Outbreak of cholera deaths on map in 1850s.
Reference: Nina Mishra, HP Labs
What is clustering?

Reordering of vectors in a dataset so that similar patterns are next to each other.

Why cluster microarray data?

• **Guilt-by-association**: if unknown gene i is similar in expression to known gene j, maybe they are involved in the same/related pathway

• **Dimensionality reduction**: datasets are too big to be able to get information out without reorganizing the data
Clustering Random vs Biological Data

Challenge – when is clustering “real”?
K-means clustering

Define $k = \#\text{clusters}$

Randomly initialize cluster centers

Assign each point to its closest center

Recalculate each center $= \text{median of its members}$

Until <stop condition>
K-means clustering

DEMO

http://www.naftaliharris.com/blog/visualizing-k-means-clustering/
K-means clustering

Conceptually similar to Expectation-Maximization

EM iteration alternates between two steps:

1. E step: Creates a function for the expectation of the log-likelihood evaluated using the current estimate for the parameters, and

These parameter-estimates are then used to determine the distribution of the latent variables in the next E step.
K-means clustering

Stopping condition

- Until the change in centers is less than <constant>
- Until all genes get assigned to the same partition twice in a row
- Until some minimal number of genes (e.g. 90%) get assigned to the same partition twice in a row
K-means clustering

Some issues

- Have to set k ahead of time
- Prefers clusters of approx. similar sizes
- Each gene only belongs to 1 cluster
- Genes assigned to clusters on the basis of all experiments
Hierarchical clustering

- Imposes hierarchical structure on all of the data
- Easy visualization of similarities and differences between genes (experiments) and clusters of genes (experiments)
Hierarchical clustering

Start with each pattern in its own cluster

Join patterns that are most similar

Compare joined patterns to all un-joined patterns

Until all patterns are merged into a single cluster
Hierarchical clustering
Hierarchical clustering
Hierarchical clustering
Hierarchical clustering
Hierarchical clustering
Hierarchical clustering
Dendrogram

- Dendrogram. Scientific visualization of hypothetical sequence of evolutionary events.
 - Leaves = genes.
 - Internal nodes = hypothetical ancestors.

Dendrogram of Human tumors

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group
Hierarchical clustering: problems

- Hard to define distinct clusters
- Genes assigned to clusters on the basis of all experiments
- Optimizing node ordering hard (finding the optimal solution is NP-hard)
- Can be influenced by one strong cluster – a problem for gene expression b/c data in row space is often highly correlated
Distance Metrics

- Choice of distance measure is important for most clustering techniques
- Linear measures: Euclidean distance, Pearson correlation
- Non-parametric: Spearman correlation, Kendall’s tau

\[d = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2} \]

\[r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{\sigma_x} \right) \left(\frac{y_i - \bar{y}}{\sigma_y} \right) \]

\[\rho = 1 - \frac{6 \sum_{i=1}^{n} [rank(x_i) - rank(y_i)]}{n(n^2 - 1)} \]
Distance Metrics

Consider the following plot of 3 pairs of genes

- **Y**
 - No correlation

- **V**
 - Positive correlation

- **Z**
 - Negative correlation
Distance Metrics

Pearson correlation (r) is a measure of the linear correlation (dependence) between two variables X and Y.

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{s_X} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right)$$

$+1 \leq r \leq -1$

+1 is total positive correlation

0 is no correlation

−1 is total negative correlation.
Distance Metrics

11 datapoints

Mean (x) = 9
Var (x) = 11

Mean (y) = 7.50
Var (y) ~ 4.12

Cor (x, y) = 0.816

Linear regression line:
y = 3.00 + 0.500x

Anscombe’s quartet

Distance Metrics

- Choose your distance measure carefully after:
 - Exploring your data using sanity-checks
 - **Looking** at your data. There is no substitute for this.

- Linear measures: Euclidean distance, **Pearson correlation**
- Non-parametric: Spearman correlation, Kendall’s tau