
ISC 233 Warmup: Finite Language Class

Develop a class Language for processing finite formal languages, supporting union,
concatenation, and n-closure.

Definitions. A language is a set of strings. A set is a collection of elements where no two elements
are equal; we provide a class SET.java that enforces this property. The union of two languages
is the set of all strings that are in either or both of the two languages. The concatenation of two
languages is the set of all strings that can be formed by appending a string from the second
language to a string from the first language. The n-closure of a language is the set of all strings that
can be formed by concatenating n strings from the language. Here are some examples, using RE
notation:

union: a|abc = { a, abc }  
concatenation: (b|bc|bcd)(cd|d) = { bccd, bcd, bcdcd, bcdd, dd }  
2-closure: (e|ef){2} = { ee, eef, efe, efef }

Your task. Make sure that you have downloaded the files Language.java and SET.java as
per the online instructions. Language.java is a client of the SET data type, which takes care of
maintaining sets of distinct elements (adding a string to a set of strings that is already contains
that string has no effect, as desired). Add code to Language.java as indicated within the file to
implement the concatenate() method and the closure() method. We have provided
implementations of the constructors and the union() and toString() method to help you get
started.

Example. Note that Language.java has a main() client to test your methods by printing out
the strings in the languages a|abc, (b|bc|bcd)(cd|d) and (e|ef){2}. Your program must
behave as follows (the strings on each line can be in any order):

% java-introcs Language  
 a abc  
 bccd bcd bcdcd bcdd bd  
 ee eef efe efef

Note that the string bcd appears only once in the second language, even though it can be formed
either by concatenating b and cd or by concatenating bc and d.

Restrictions. Also as indicated within the file, you must use only a single instance variable
language which is final. In other words, your Language class has to be immutable—the
invoking Language object cannot change during a union, concatenate, or closure operation.

Hint 1. To implement these methods, you will need to use Java’s for-each loop. See the provided
toString() and union() methods for examples of using a for-each loop with SET<String>.

Hint 2. There are many methods in SET.java but the only ones you will need to use for this
exam are: the constructor, the add() method, and for-each loops (see Hint 1).

Food for thought. Why not just use an array as the underlying data structure?

